
Mechanising Hylomorphisms for Extraction of
Executable Code

David Castro Perez1[0000−0002−6939−4189], Marco Paviotti2,3[0000−0002−1513−0807],
and Michael Vollmer3[0000−0002−0496−8268]

University Of Kent, Canterbury, CT2 7NZ, United Kingdom
{D.Castro-Perez, M.Paviotti, M.Vollmer}@kent.ac.uk

Abstract. Generic programming with recursion schemes provides a pow-
erful abstraction for structuring recursion, in part due to the rigorous
set of algebraic laws that they satisfy. These laws are the basis for rea-
soning about program equivalences and, therefore , they can be used for
reasoning about program correctness and optimisations. Some of these
optimisations are successfully applied by compilers of (functional) lan-
guages. Formalising recursion schemes in a type theory offers additional
termination guarantees, but it often requires compromises affecting the
resulting code, such as imposing performance penalties, requiring the as-
sumption of additional axioms, or introducing unsafe casts into extracted
code (e.g. Obj.magic in OCaml).
This paper presents the first Coq formalisation of a recursion scheme,
called the hylomorphism, along with its algebraic laws allowing for the
mechanisation of all recognised (terminating) recursive algorithms. The
key contribution of this paper is that this formalisation is fully axiom-free
allowing for the extraction of safe, idiomatic OCaml code. We exemplify
the framework by formalising a series of algorithms based on different
recursive paradigms such as divide-and conquer, dynamic programming,
and mutual recursion and demonstrate that the extracted OCaml code
for the programs formalised in our framework is efficient, resembles code
that a human programmer would write, and contains no occurrences of
Obj.magic. We also present a machine-checked proof of the well-known
short-cut fusion optimisation.

1 Introduction

Structured recursion schemes [19,20] are powerful abstractions that capture
common patterns of recursion. The main benefit of structuring computation
using recursion schemes, is that they enjoy well-estabished algebraic proper-
ties that can serve as a foundation for reasoning about program equivalences,
transformations, and optimisations (e.g. fusion laws, or semi-automatic paralleli-
sations [34,13,29,7]). These algebraic properties led to their use in the context of
program calculation, where programmers would describe their code using simple,
inefficient specifications in an algebra of programming [4], and then use the
algebraic laws of this algebra of programming to calculate an efficient version of

the same algorithm. Suppose, for example, that we want to write a program that
sorts a list of integers, and then multiplies by 2 all its elements. In OCaml, we
may write this function directly:

let rec sort_times_two = function
| [] -> []
| h :: t -> let (l, r) = partition (fun x -> x < h) t in
sort_times_two l @ (h * 2) :: sort_times_two t

Instead of writing this function directly, we may observe that we can derive it
by fusing a regular quicksort OCaml implementation, with map (fun x -> x * 2).
This is the main idea behind program calculation: start from a simple specification,
e.g. map (λx. x× 2) ◦ sort, and use program equivalences and algebraic laws to
rewrite it to an optimised version (e.g. the fused OCaml implementation above).
We will revisit a similar example in Section 5.1.

Despite the rigorous set of algebraic laws that are satisfied by recursion
schemes, there is a lack of tool support for their use in the context of program
calculation. In fact, most of the work on applying program calculation is done
by performing pen-and-paper proofs, and then translating the result to specific
instances of recursion schemes, implemented in a programming language (generally
Haskell). There are some examples of implementations of program calculation
techniques, but these implementations are scarce, not up to date, and not verified
in a proof assistant. For example, Cunha et al. [9] automated program calculation
techniques by a custom Haskell implementation.

Several authors build tools for applying program calculation techniques by
mechanising them as part of a proof assistant. However, most of the work in
mechanising recursion schemes focuses on a narrow subset of the known recursion
schemes due to termination issues, or do not focus on proving algebraic laws
of generic recursion schemes [35,30,24]. Indeed, most of the mechanisations of
generic recursion schemes focus on maps and folds, and few authors focus on
the unfolds. Omitting unfolds severely limits the expressivity of the resulting
mechanisations, and prevent them from being able to mechanise the most general
recursion scheme: a divide-and-conquer algorithm which goes under the name of
hylomorphism [26,21]. This generality has been proven by Hinze et al. [20], by
showing that all known recursion schemes are instances of hylomorphisms. To
date, no work has mechanised hylomorphisms in the Coq proof assistant, together
with their algebraic laws.

Recently, Abreu et al. [2] encoded an algebraic approach to divide-and-conquer
computations in which termination is entirely enforced by the typing discipline.
Their approach solves the problem of termination proofs as well as the performance
of the code that is run within Coq, but it does not allow for extraction of idiomatic
OCaml code, and it is not well-suited for program calculation. This is unfortunate
since code extration is what allows the execution of code that has been verified
in Coq [31,25,28,32]. In Abreu et al’s approach, extraction (1) does not preserve
the recursive structure of common implementations; and (2) leads to unsafe casts
like Obj.magic in the generated code. This latter is also problematic in that, for

2

higher-order programs, simple interoperations can lead to incorrect behaviour or
even segfaults [12] and, moreover, it invalidates the fast-and-loose principle [10].

The contributions of this paper are as follows. This work presents the first
Coq formalisation hylomorphisms that (1) is fully axiom-free; (2) allows the
extraction of idiomatic OCaml code; and (3) can use regular Coq equalities to
do program calculation, derive correct implementations, and apply optimisations.
The full mechanisation is open source. While programmers still need to reason
about the termination of their programs, the use program calculation can ease
this task by allowing the use of fusion on programs that have already been proven
to terminate.

The remainder of the paper is structured as follows:

– In Section 2 we give an overview about recursion schemes.
– In Section 3 we formalise the type of container functors ensuring the presence

of least and greatest fixed-points for functors and suitably adapted for program
extraction.

– In Section 4 we mechanise folds, unfolds, and hylomorphisms, as well as
proving their uniqueness properties in Coq.

– In Section 5 we use the framework to formalise examples of divide-and-conquer,
dynamic programming, and mutual recursion algorithms. Furthermore we
verify the short-cut fusion optimisation and show the extracted optimised
code to OCaml.

2 Recursion Schemes

The structure of data is very similar to the structure of an algorithm which
processes that data. This relationship manifests in the form of structured re-
cursion schemes which are widely used in functional languages such Haskell.
Canonical examples are folds (catamorphisms), which consume data, and unfolds
(anamorphisms), which produce it. While some implementations of recursion
schemes like foldr in Haskell are specific to a particular data structure, in this case
Lists, we can generalise further these ideas to account for generic (co)inductive
data types and generic algorithms operating on them.

Furthermore folds and unfolds can be shown to capture a wide range of
recursion schemes such as primitive recursion, mutual recursion, dynamic pro-
gramming algorithms, polymorphic recursion, recursion with accumulators and
so on. However, for divide-and-conquer algorithms folds need to be generalised
to hylomorphisms which provide the ultimate basic building block for any other
recursion scheme. This is done by looking at recursion schemes from the point of
view of category theory.

2.1 Elements of Category Theory

A category is a collection of objects A,B,C, denoted by Obj(C) and a collection
of arrows f, g, h between these objects, denoted by Arr(C), such that there always

3

exists an identity arrow idA : A → A for each object A and for two arrows A f−→ B

and B
g−→ C there always exists an arrow A

g◦f−−→ C obeying the associativity law.
We denote HomC(A,B) the set of arrows from A to B and we use the letters
C, D, E . . . for categories1. The initial object in a category, denoted by 0, is the
object such that for any other object A there is a unique arrow 0

!−→ A. Dually,
the terminal object, denoted by 1, is the object such that for any other object
A there is a unique arrow A

!−→ 1. Initial and terminal object are unique up-to
isomorphism.

For example, the category of sets, denoted by Set, is the category where
objects are sets and arrows are functions between sets. The initial object 0 in
Set is the empty set ∅ and the terminal object 1 is any singleton set. The reader
who is not accustomed with category theory can assume types are sets, giving
the intuition that the category Set can also be viewed as the category of (simple)
types and programs between them.

A functor F : C → D is a map between categories mapping both objects
and arrows from one category to another. Hence a functor has two components,
one which maps objects into objects F : Obj(C) → Obj(D) and one which maps
arrows into arrows F : HomC(A,B) → HomD(FA,FB) such that identity and
composition of arrows are preserved:

F (idA) = idFA F (g ◦ f) = F (g) ◦ F (f)

This latter component is also called the functorial action and can be thought of
as the fmap higher-order function in functional programming.

In Set, we can define the set of lists

List(A) ∼= 1 +A× List(A)

as the set inductively generated by the constructors nil : 1 → List(A) and
cons : A× List(A) → List(A). The terminal object in Set is the unit type, that
only has one inhabitant, ∗ : 1. The List(−) type is a functor. Its action on objects is
to take any set A to List(A), and its functorial action List(f) : List(A) → List(B)
is given by List(f)(∗) = ∗ and List(f)(cons(a, xs)) = cons(f(a), List(f)(xs)).
Notice that the definition List(f) is well-defined as it recursively calls on a
smaller argument. However, there is a more general way of proving these type of
definitions are well-defined. Similarly, the set of streams Str(A) ∼= A× Str(A) is
the greatest set generated by the constructor cons : A× Str(A) → Str(A).

Functors in Haskell It is often helpful for functional programmers to think
of categorical constructions in terms of Haskell thereby assuming that Haskell
types are sets and programs are functions [10].

We can declare the class of types which are functors. This is done by imposing
that a function f : * -> * comes with a functorial action given by function
fmap:
1 For presentation purposes we shall not deal with size issues and assume all the

categories are locally small.

4

class Functor f where
fmap :: (a -> b) -> f a -> f b

We now define the type of lists as usual and then show that it is an instance
of the class Functor by implementing the fmap program:

data List a = Nil | Cons a (List a)

instance Functor List where
fmap f Nil = Nil
fmap f (Cons x xs) = Cons (f x) (fmap f xs)

2.2 Algebras and Catamorphisms

For a functor F : C → C an F -algebra is a pair (X, aX) where X is an object of
the category called the carrier of the algebra and aX is an arrow of type FX → X
called the structure map. The category of F -algebras, denoted by F -Alg(C), is
the category where objects are F -algebras and arrows f : (X, aX) → (Y, aY)
are F -algebra homomorphisms f : X → Y in C such that they respect the
structure of the algebra, that is f ◦ aX = AY ◦ F (f). The initial object in this
category is called the initial F -algebra, that is the F -algebra which has a unique
F -algebra homomorphism into any other F -algebra. By Lambek’s lemma the
initial F -algebra is precisely the least fixed-point for the functor F which we
denote by (µF, in) with in : FµF → µF and in◦ : µF → FµF witnessing the
isomorphism FµF ∼= µF . By the property of initial F -algebras, for any other
F -algebra (X, aX) there exists a unique F -algebra homomorphism, denoted by
β : (µF, in) → (X, aX) and pronounced “catamorphism” satisfying:

f = aX ⇐⇒ f = aX ◦ F (f) ◦ in (1)

In words, any F -algebra homomorphism from the initial F -algebra is a catamor-
phism. As a result of the uniqueness property we can derive the fusion law. For
all F -algebra homomorphisms f : (X, aX) → (Y, aY) we have

f ◦ aX = aY (2)

which means that the composition of a program f with a catamorphism recursing
once over the data structure is the same as performing that recursion once using
the algebra aY instead of aX . This is a useful result for program optimisation as
we shall see.

For example, for a set A we define the functor F : Set → Set mapping
X 7→ 1 + A × X. An F -algebra is a set B together with a structure map
[b, i] : 1+A×B → B. The initial F -algebra is clearly the set of lists List(A). The
catamorphism associated with the type of lists is the unique arrow recursively
translating the initial algebra [nil, cons] into the algebra [b, i]. In functional
programming this is commonly referred to as foldr : (1 → B) → (A×B → B) →
B. We can in fact set foldr base ind = [base, ind] .

5

Inductive Types and Catamorphisms in Haskell We now implment the
least fixed-point of a functor f. Inuitively this is the type of f-branching trees of
finite depth:

newtype Fix f = In {inOp :: f (Fix f)}

Note that since Haskell is a lazy language with general recursion this type can
also represent infinite trees. However, the point of using recursion schemes is
precisely that of avoid using general recursion in the first place.

A catamorphism can be readily implemented as follows

cata :: Functor f => (f a -> a) -> Fix f -> a
cata alg = alg . fmap (cata alg) . In

As an example of how to construct inductive types we define the functor
X 7→ 1 +A×X as data type parameterized by a type:

data ListF a x = Nil | Cons a deriving Functor
newtype List a = (Fix ListF) a

It should be easy now to see that a foldr is precisely a catamorphism over the
type List which we have just defined. For example, summing up the elements of
a list can be implemented using a catamorphism as follows

sum :: Fix (ListF Int) -> Int
sum xs = cata (\case { Nil -> 0; Cons n m -> n + m }) xs

In the program above, the code inside the lambda case is precisely the ListF Int-
algebra for the catamorphism.

2.3 Coalgebras and Anamorphisms

The dual of an algebra is a coalgebra. For an endofunctor B : C → C, a B-
coalgebra is a pair (X, cX) where X ∈ Obj(C) is the carrier of the coalgebra and
cX : X → BX is a morphism.

For example, for a set of states X and a finite set of labels L we can define
a labelled transition system (LTS) on X as a function X → BX implementing
the transition system with BX = L×X. In particular, for a state x1 ∈ X, c(x1)
returns a pair (l, x2) where l ∈ L is the observable action and x2 ∈ X is the next
state. In this case, we can even set some notation for the transition map:

x
l−→ y

∆
= cX(x) = (l, y)

The category of B-coalgebras, denoted B-CoAlg, is the category where objects
are B-coalgebras and morphisms f : (X, cX) → (Y, cY) are B-coalgebra homo-
morphisms f : A → B, that is cY ◦ f = F (f) ◦ cX . Terminal object in this
category B-coalgebra corresponds to the greatest fixed-point for the functor B,
denoted by (νB, out) where out denotes the final B-coalgebra out : νB → BνB.

6

For example, the terminal coalgebra for the functor BX = L × X is the
set of of infinite streams, that is the greatest solution to the domain equation
Str(A) ∼= A × Str(A). As a result, for any B-coalgebra (X, cX) there exists a
unique B-coalgebra homomorphism into the terminal coalgebra (νB, out) which
is denoted by cX and pronounced “anamorphism”. We spell out the uniqueness
property:

f = cX ⇐⇒ f = out◦ ◦B(f) ◦ cX (3)

In words, for any B-coalgebra, if there is any other B-coalgebra homomorphism f
into the terminal object then it must be the anamorphism on the same coalgebra.
As a result of the uniqueness property we can derive the fusion laws. For all
B-coalgebra homomorphisms f : (X, cX) → (Y, cY) we have

cY ◦ f = cX (4)

Coinductive Types and Anamorphisms in Haskell Similarly to the
inductive case, we can implement coinductive types and catamorphisms as follows:

newtype CoFix f = OutOp {out :: f (Fix f)}

As mentioned above, this type is similar to the data type Fix we already defined.
However, this time we are going to use this assuming that it is the coinductive
fixed-point by defining an anamorphism on it:

ana :: Functor b => (a -> b a) -> a -> CoFix b
ana coalg = OutOp . fmap (ana coalg) . coalg

For example, the stream of natural numbers can now be defined using an anamor-
phism

nat :: CoFix (ListF Int)
nat = ana (\x -> Cons x (x+1)) 0

where the argument to the anamorphism is the ListF Int-coalgebra.

2.4 Recursive Coalgebras and Hylomorphism

Recursion schemes provide an abstract way to consume and generate data
capturing divide-and-conquer algorithms where the input is first destructured
(divide) in smaller parts by means of a coalgebra which are computed recursively
and then composed back together (conquer) by means of an algebra.

Let (A, a) be an F -algebra and (C, c) be an F -coalgebra. An arrow C → A is
an hylomorphism, written h : (C, c) ↣ (A, a) if it satisfies

h = a ◦ F (h) ◦ c (5)

As we stated earlier, a solution to this equation does not exist for an arbitrary
algebra and coalgebra pair and, in fact, this definition cannot be accepted by
Coq.

7

A coalgebra (C, c) is recursive if for every algebra (A, a) there is a unique
hylo (C, c) ↣ (A, a). We denote these type of hylos by c → a .

An example of a recursive coalgebra is the partition function in quicksort
which destructures a list into a pivot and two sublist and as long as the sublists
are smaller the partitioning function still yields a unique solution to the recursion
scheme. The uniqueness property of the hylo yields the following fusion laws:

f ◦ c → a = c → a′ ⇐= f ◦ a = a′ ◦ F (f) (6)
c → a ◦ f = c′ → a ⇐= c ◦ f = F (f) ◦ c′ (7)

Using the hylo fusion laws, we can prove the well-known deforestation optimisation,
also known as the composition law [18]. This is when two consecutive recursive
computations, one that builds a data structure, and another one that consumes
it, can be fused together into a single recursive definition. This, in turn, allows
us to prove that a recursive hylomorphism is the composition of a catamorphism
and a recursive anamorphism.

Haskell Implementation of Hylomorphisms We implement the hylomor-
phism tightly following the theory explained above:

hylo :: Functor f => (c -> f c) -> (f a -> a) -> c -> a
hylo c a = a . fmap (hylo c a) . c

A classic example of a divide-and-conquer algorithm that can be written as
an hylomorphism is the quicksort program below:

partition x xs = ([l | l <- xs, l < x], x, [r | r <- xs, r >= x])

quicksort :: [Int] -> [Int]
quicksort [] = []
quicksort (x:xs) = let (xs, x, ys) = partition x xs

in (quicksort xs) ++ [x] ++ (quicksort ys)

The partition program takes an element x and a list and returns a triple consisting
of a list with all the elements in the list smaller than x, the element itself and
a list with all the elements in the list greater or equal than x. The quicksort
program first runs the partition program, which divides the list in three parts,
calls itself recursively on the sublists and then puts the results together using
the concatenation function.

To implement this as an hylo we define the functor representing trees where
leaves are just empty and each node contains a value:

data TreeF a k = Leaf | Branch k a k deriving Functor

Now the partition program can be written as a TreeF-coalgebra

divide :: [Int] -> TreeF Int [Int]
divide [] = Leaf
divide (p:xs) = Branch [l | l <- xs, l < p] p [r | r <- xs, r > p]

8

and the concatenation function can be written as TreeF-algebra

conquer :: TreeF Int [Int] -> [Int]
conquer Leaf = []
conquer (Branch ls x rs) = ls ++ [x] ++ rs

Finally, quicksort can be rewritten as an hylomorphism

quicksort = hylo divide conquer

As an important remark we have used the in-built list type for keeping the code
as tidy as possible, but it would have been possible to use the inductive List
type we defined above and define both divide and conquer via catamorphisms.

Finally, it is important to note that both divide and conquer are not initial
algebras or terminal coalgebras on ListF. These are rather (co)algebras on TreeF.
Hence the terminating argument relies solely on the fact that divide is a recursive
coalgebra thus there is an unique solution to hylo divide conquer.

Recursive Anamorphisms Anamorphisms applied to recursive coalgebras
specialise to hylomorphisms into an inductive data type in the following way.
A recursive coalgebra can be applied only finitely many times, therefore when
this is applied to an anamorphism the only possible traces it can produce from
the seed function are the finite ones. We denote this special kind of recursion
scheme recursive anamorphism. We can show that recursive anamorphisms of type
X → νF can also be given the type X → µF . Moreover, these anamorphisms
are exactly hylomorphisms on the recursive F -coalgebra and the algebra in for
the inductive data type νF . This fact falls out from the uniqueness property of
the hylomorphism and the fact that recursive anamorphisms satisfy the same
equation.

3 Mechanising Extractable Container Functors

In this section, we focus on mechanising container functors in a way that is
suitable for code extraction. Recall from Section 2 that we need to be able to
abstract away from particular shape of the data, and we can do this using functors
that have suitable fixed-point properties; i.e. those which have a initial algebras.
A common approach to construct such functors is to use containers [1]. However,
reasoning about container equality will require us to consider both functional
extensionality and heterogeneous equality. We avoid these axioms by introducing
a custom equivalence relation on types (Section 3.3).

3.1 Functors and Containers

A straightforward mechanisation of functors as defined in Section 2 does not
work in Coq due to the strict positivity condition. In fact, if we simply require
that functors are functions F : Type -> Type satisfying the necessary identity and

9

composition properties, then we will not be able to construct least/greatest fixed
points of this type, and we will not be able to mechanise recursion schemes that
follow this structure:

(* REJECTED due to negative occurrence of (LFix F) *)
Inductive LFix (F : Type -> Type) := LFix_in (lfix_out : F (LFix F)).

One common workaround for this is the use of Mendler-style recursion [27].
Roughly, the idea is to “pack” an abstract type together with the functor that
captures the structure of the recursion. From this abstract type, we will be able
to “extract” the contents of the functor. This is, for example, the solution used
by the PaCo library [22], and a simplified version of it is the following:

Inductive MendlerLFix (F : Type -> Type) :=
In Y (next : Y -> MendlerLFix F) (in_op : F Y).

While this definition solves the strict positivity problem, it does not solve the
problems of: (1) reasoning about data/program equalities; and (2) extraction
to idiomatic OCaml code. To reason about program equalities, we would need
to reason about equalities of functions with some abstract Y as their domain.
Furthermore, the extraction of F Y will lead to unsafe casts in the extracted
OCaml code.

Another common solution is to the strict positivity problem is the use con-
tainers [1]. A container S ▷ P is defined by a type of shapes S : Type and
a family of position types indexed by shapes P : S → Type. An extension
of this container is a functor JS ▷ P K, whose action on objects is given by
JS ▷ P K X = Σs : S. P s → X, and on morphisms is given by post-composition,
keeping the shape the same JS ▷ P K f = λ(s, g). (s, f ◦ g).

To explain the role of shapes and positions in containers, consider the functor
F X = 1+A×X. An equivalent container, i.e. a container with an extension that
is isomorphic to F , requires a shape that can distinguish two cases, indicating
that there are two constructors to build an object of type F X. For example,
we could define SF = 1 + A. We need to consider two cases for the family of
positions: PF (inj1 ∗) = 0, because there are no occurrences of X in the left case;
and PF (inj2 a) = 1, because there is one occurrence of X in the right hand side.
It is easy to see that JSF ▷ PF K ∼= F . In general, every polynomial functor has an
equivalent container, and we have mechanised this result.

3.2 Extractable Containers

A straightforward encoding of containers in Coq would use dependent types to
represent families of positions. However, Ocaml’s type system is not equipped to
handle these, which will lead to extracting OCaml code with unsafe casts.

Consider instead representing the positions of a container using a decidable
validity predicate which assigns shapes to positions. In Coq, we use a boolean
function and a coercion from bool to Prop to represent the decidable predicate
valid, similarly to SSReflect [17]. Given a Shape : Type, and a type of all possible
positions APos : Type, the family of positions for a given shape can be defined as
a dependent pair:

10

Definition Pos (s : Shape) = { p : APos | valid s p }.

Coq’s code extraction will now be able to erase the validity predicate, and
generate OCaml code that is free of unsafe casts. The OCaml code extracted
for Pos will now be exactly the code extracted for APos. The decidability of the
validity predicate is crucial for our purposes of remaining axiom-free. To illustrate
this, suppose that we need to show the equality of two container extensions. We
will need to show that, for the same positions, they will produce the same result.
In Coq, the goal would look as follows:

k : Pos s -> X
P1, P2 : valid s p

k (existT _ p P1) = k (existT _ p P2)

If valid was a regular proposition in Prop, it would not possible to prove the
equality of P1 and P2. However, by using a decidable predicate, if we know that
P1 and P2 are of type valid s p = true, then we can prove without any axioms
that P1 = P2 = eq_refl.

Suppose that F is a container represented in Coq. One can think of these F as
pairs containing the shapes and families of positions (which are, in turn, defined
in terms of decidable validity predicates). An extension of a container F, App F in
Coq, is then defined as follows:

Record App F (X : Type)
:= { shape : Shape F; cont : {p | valid shape p} -> X }.

This approach solves the problem of the unsafe casts, since the code extracted
for {p | valid shape p} will be an OCaml singleton type defined as the OCaml
equivalent to Pos.

Equality of Container Extensions Reasoning about the equality of container
extensions is not entirely solved by using decidable validity predicates to define
the families of positions. In general, we want to equate container extensions that
have the same shape, and that, for equal shape and position, they return the
same element. To avoid the use of the functional extensionality axiom, we capture
this relation with the following inductive proposition:

Inductive AppR (x y : App F X) : Prop :=
| AppR_ext (shape x = shape y)

(forall p1 p2, projT1 e1 = projT1 e2 -> cont p1 = cont p2).

Note that we do not care about the validity proof of the positions, only their
value. This is to simplify (slightly) our proofs. This relation is trivially reflexive,
transitive, and symmetric.

However, the use of a different equality for container extensions now forces
us to deal with the fact that some types have different definitions of equality.
In particular, we want to reason about the equality of functions of types such
as App F A -> B (or B -> App F A). Since these types now come with their own

11

equivalence, any function that manipulates them needs to be respectful ; i.e. given
R : X -> X -> Prop and R' : Y -> Y -> Prop, we want functions (morphisms) that
satisfy the following property:

forall (x y : X), R x y -> R' (f x) (f y)

3.3 Types and Morphisms

We address the different forms of equality by defining a class of setoids, types with
an associated equivalence relation, and considering only functions that respect
the associated equivalences, or proper morphisms with respect to the function
respectfulness relation. We use the type-class mechanism, instead of setoids in
Coq’s standard library, to help Coq’s code extraction mechanism remove any
occurence of custom equivalence relations in the extracted OCaml code. We use
=e to denote the equivalence relation of a setoid. By default, we associate every
Coq type with the standard propositional equality, unless a different equivalence
is specified (we allow overlapping instances, and Coq’s propositional equality
takes the lowest priority). Given types A and B, with their respective equivalence
relations eA : A -> A -> Prop and eB : B -> B -> Prop, the we define the type
A ~> B to represent proper morphisms of the respectfulness relation of R to R'.

Record morph A {eA : setoid A} B {eB : setoid B} :=
MkMorph { app :> A -> B; app_eq : forall x y, x =e y -> app x =e app y }.

Notation "A ~> B" := (@morph A _ B _).

We rely on Coq’s type class mechanism to fill in the necessary equivalence
relations. Coq’s code extraction mechanism will erase any occurrence of Prop in
the code, so objects of type A ~> B will be extracted to the OCaml equivalent
to A -> B. Note the implicit coercion from A ~> B to A -> B. On top of this, we
define basic function composition and identity functions:

Notation "f \o g" = (comp f g).
Definition comp : (B ~> C) ~> (A ~> B) ~> A ~> C := ...
Definition id : A ~> A := ...

Using custom equivalences and proper morphisms, we redefine the definitions of
container extensions and container equality. In particular, container extensions
require a proper morphism to check the validity of positions in shapes, and
container equality now uses equivalences of shapes and contained elements:

Inductive AppR F `{setoid X} (x y : App F X) : Prop :=
| AppR_ext (Es : shape x =e shape y)

(Ek : forall e1 e2, val e1 = val e2 -> cont x e1 =e cont y e2).

Note the use of =e instead of Coq’s standard equality. For positions, however, we
chose to use Coq’s propositional equality, since this leads to simpler code. We
explain why in Section 4.1, and the mechanisation of initial algebras of container
extensions.

Our definition of morphisms, and the use of different equivalences leads to
the well-known “setoid hell”. We mitigate this problem by providing tactics and

12

notations to automatically discharge proofs of app_eq for morphisms, whenever the
types use the standard propositional equality, or a combination of propositional
and extensional equality. However, our compositional approach allows us to build
morphisms by plugging in other morphisms to our combinators. In our framework,
our expectation is that the user-provided functions remain small, with relatively
straightforward proofs of app_eq.

However, by using this mechanisation, we gain simplified proofs via Coq’s
Generalised Rewriting. Since every morphism f : A ~> B satisfies the property
that if x =e y, then f x =e f y, we can add every morphism as a proper element
of Coq’s respectfulness relation. In practice, this means that we can use the
rewrite tactic on proofs of type A =e B, for arbitrary A and B, whenever they are
used as arguments of morphisms, as well as Coq’s reflexivity, symmmetry, and
transitivity tactics. For example:

Goal forall `(f : A ~> B) `(g : B ~> C) `(h : C ~> D) (H : h \o g =e id),
h \o (g \o f) =e f.

Proof. rewrite compA, H. reflexivity. Qed.

Polynomial Types We define a number of equivalences for polynomial types.

Instance ext_eq (A : Type) `{eq_B : setoid B} : setoid (A -> B).
Instance pair_eq `{eq_A : setoid A} `{eq_B : setoid B} : setoid (A * B).
Instance sum_eq `{eq_A : setoid A} `{eq_B : setoid B} : setoid (A + B).
Instance prop_eq : setoid Prop.
Instance pred_sub `{eA : setoid A} {P : A -> Prop} : setoid {a : A | P a}.

Most of the definitions that involve functions and polynomial types are straightwor-
ward. Identity and composition are defined as fun x => x and fun f g x => f (g x)

respectively, and the proofs that they are proper morphisms is straightfor-
ward, and automatically discharged by Coq. Products are built using function
fun f g x => (f x, g x), with the projections being the standard Coq fst and
snd functions. Similarly, sum injections are encoded using Coq’s inl and inr

constructors, and pattern matching on them uses the function:

fun f g x => match x with | inl y => f y | inr y => g y end

The proofs that these morphisms are proper are straightforward. Finally, we
also provide functions for currying/uncurrying, and flipping the arguments of a
proper morphism. We force most of our definitions to be inlined, to help Coq’s
code extraction mechanism to inline as many of these combinators as possible.

We prove the isomorphisms of polynomial types and the equivalent container
extensions. As an example, we will consider the isomorphisms of pairs with their
equivalent container extensions. Suppose that we know that App F X is isomorphic
to A, and App G X is isomorphic to B. Then we can show that App (Prod F G) X is
isomorphic to A * B. If we have an element of type App (Prod F G) X, using the
inl position, we can obtain App F X. Similarly, using inr, we can obtain App G X.
Since these are the only two valid positions in the shape of pairs, we have finished.
It is now sufficient to use the isomorphisms of App F X and App G X to obtain A * B.

13

Similarly if we have A * B, we can first use the isomorphisms of A and B to obtain
App F X * App G X, and then construct the necessary container extension. Given
p_inl : Pos l -> Pos (l * r) (resp. p_inr) that act as inl (resp. inr) on prod-
uct positions, and case_pos : (Pos l -> X) -> (Pos r -> X) -> Pos (l * r) -> X

that pattern matches on the product positions, the functions that witness the
isomorphism are:

Definition iso_pair (x : App (Prod F G) X) : App F X * App G X :=
({| shape := shape (fst x); cont := fun e => cont x (p_inl e) |},
{| shape := shape (snd x); cont := fun e => cont x (p_inr e) |}).

Definition iso_prod (x : App F X * App G X) : App (Prod F G) X :=
{| shape := (shape (fst x), shape (snd x));

cont := case_pos (cont (fst x)) (cont (snd x)) |}.

Proving that the composition of these functions is the identity is straightforward
using the fact that Prod containers only have two valid positions.

4 Formalising Recursion Schemes

Recursion schemes provide an abstract way to consume and generate data.
We now proceed onto describing how to formalise hylomorphisms in Coq. We
first formalise algebras for container extensions (Section 4.1), then we formalise
coalgebras (Section 4.2) and then we put together these notions to formalise
recursive coalgebras and hylomorphisms (Section 4.3).

4.1 Algebras and Catamorphisms for Containers

Recall that an algebra is a set A together with a morphism that defines the
operations of the algebra F A → A. Given a type A and a container F, an
‘App F’-algebra is a pair given by the carrier A, and the structure map of type:

Notation Alg F A := (App F A ~> A).

For simplicity, we will abuse terminology, and call these F-algebras, instead of
‘App F’-algebras.

The initial F-algebra can be defined as follows, thanks to the use of containers:

Inductive LFix F : Type := LFix_in { LFix_out : App F (LFix F) }.

where LFix_in is the initial algebra in, while LFix_out is its inverse in◦ (see
Section 2). As an example, the initial F-algebra for the container that is iso-
morpic to the functor F X = unit + A * X is the type of lists with the F-algebra
being defined by the empty list Empty : unit -> LFix F and the cons operation
Cons : A * LFix F -> LFix F.

We define LFix as a setoid, where its equivalence relation can be described as
the least fixed point of AppR (see Section 3.3). We define smart constructors for
the isomorphism of least fixed points as respectful morphisms:

l_in : App F (LFix F) ~> LFix F l_out : LFix F ~> App F (LFix F)

14

Catamorphisms are constructed, as expected, so that they structurally de-
construct the datatype, call themselves recursively, and then compose the result
using an F-algebra.

Definition cata_f (alg : Alg F A) : LFix -> A
:= fix f (x : LFix)

:= match x with
| LFix_in ax =>

alg {shape := shape ax; cont := fun e => f (cont ax e)}
end.

It is easy to show that this function is a respectful morphism of F-algebras.
In fact, it is possible to define it as a map of the following type:

cata : forall `{setoid A}, Alg F A ~> LFix ~> A

We prove that catamorphisms satisfy the universality property we explained in
Section 2:

Lemma cata_univ `{eA : setoid A} (alg : Alg F A) (f : LFix ~> A)
: f =e cata alg <-> f =e alg \o fmap f \o l_out.

In other words, if there is any other f with the same structural recursive shape as
the catamorphism on the algebra alg then it must be equal to that catamorphism.

4.2 Coalgebras and Anamorphisms

In general, for a container F, an F-coalgebra is a pair of a carrier X and a
structure map X -> App F X. In our development we use the following notation
for coalgebras:

Notation Coalg F A := (A ~> App F A).

Dually to the initial F-algebra, a final F-coalgebra is the greatest fixed-point
for App F. We define it using a coinductive data type:

CoInductive GFix F : Type := GFix_in { GFix_out : App F GFix }.

where GFix_out is the final F-coalgebra and GFix_in is its inverse witnessing
the isomorphism. Similarly to LFix, GFix is also defined as a setoid, with an
equivalence relation that is the greatest fixpoint of AppR. Additionally, we define
smart constructors for the isomorphism of greatest fixed points:

g_in : App F (GFix F) ~> GFix F g_out : GFix F ~> App F (GFix F)

The greatest fixed-point is a terminal F-coalgebra in the sense that it yields a
coinductive recursion scheme: the anamorphism.

Definition ana_f_ (c : Coalg F A) :=
cofix f x :=
let cx := c x in
GFix_in { shape := shape cx; cont := fun e => f (cont cx e) }.

Definition ana : forall `{setoid A}, Coalg F A ~> A ~> GFix F := (*...*)

15

From this definition the universality property falls out:

Lemma ana_univ `{eA : setoid A} (h : Coalg F A) (f : A ~> GFix F)
: f =e ana h <-> f =e g_in \o fmap f \o h.

In words, for any F-coalgebra, if there is any other function f that is a F-coalgebra
homomorphism then it must be the anamorphism on the same coalgebra.

4.3 Mechanising Hylomorphisms

Recall that hylomorphisms capture the concept of divide-and-conquer algorithms
where the input is first destructured (divide) in smaller parts by means of a
coalgebra which are computed recursively and then composed back together
(conquer) by means of an algebra.

As we mentioned in Section 2, given an F -algebra and F -coalgebra, the
hylomorphism is the unique solution (when it exists) to the equation

f = a ◦ F f ◦ c

As we stated earlier, a solution to this equation does not exist for an arbitrary
algebra/coalgebra pair and, in fact, this definition cannot be accepted by Coq.

In order to find a solution we restrict ourselves to the so-called recursive
coalgebras [3,6]. We mechanise recursive hylomorphisms which are guaranteed to
have a unique solution to the hylomorphism equation. These are hylomoprhisms
where the coalgebra is recursive, i.e. coalgebras that terminate on all inputs.
We represent recursive coalgebras using a predicate that states that a coalgebra
terminates on an input:

Inductive RecF (h : Coalg F A) : A -> Prop :=
| RecF_fold x : (forall e, RecF h (cont (h x) e)) -> RecF h x.

For convenience, we package recursive coalgebras with their proofs that they
terminate for all inputs:

Notation RCoalg F A := ({ c : Coalg F A | forall x, RecF c x }).

Recursive hylomorphisms are implemented in Coq recursively on the structure of
the proof for the type (RecF) as follows:

Definition hylo_def (a : Alg F B) (c : Coalg F A)
: forall (x : A), RecF c x -> B
:= fix f x H

:= match c x as cx
return (forall e : Pos (shape cx), RecF c (cont cx e)) -> B

with
| cx => fun H =>

a { shape := shape cx ; cont := fun e => f (cont cx e) (H e) }
end (RecF_inv H).

16

(* E2 : f2 \o g1 =e g2 \o fmap f2 *)
(* ------------------------------------- *)
(* Goal : f2 \o hylo g1 h1 =e hylo g2 h1 *)
apply hylo_uniq.

(* f2 \o hylo g1 h1 =e (g2 \o fmap (f2 \o hylo g1 h1)) \o h1 *)
rewrite fmap_comp.
rewrite ... (* rearranging by associativity *)

(* f2 \o hylo g1 h1 =e ((g2 \o fmap f2) \o fmap (hylo g1 h1)) \o h1 *)
rewrite <- E2.
rewrite ... (* rearranging by associativity *)

(* f2 \o hylo g1 h1 =e f2 \o ((g1 \o fmap (hylo g1 h1)) \o h1) *)
rewrite <- hylo_unroll.

(* f2 \o hylo g1 h1 =e f2 \o hylo g1 h1 *)

Fig. 1: Rewrite steps to prove hylo_fusion_l in our mechanisation. The steps are
exactly the same that woudld be required in a manual pen-and-paper proof.

We use RecF_inv to obtain the structurally smaller proof to use in the recursive
calls.
As we did with catamorphisms and anamorphisms, we prove that hylo_def is
respectful, and use this proof to build the corresponding higher-order proper
morphism:

hylo : forall F `{setoid A} `{setoid B}, Alg F B ~> RCoalg F A ~> A ~> B

Finally, we show that recursive hylomorphisms are the unique solution to the
hylomorphism equation.

Lemma hylo_uniq (g : Alg F B) (h : RCoalg F A) (f : A ~> B)
: f =e hylo g h <-> f =e g \o fmap f \o h.

Hylomorphisms fusion falls out from this uniqueness property:

Lemma hylo_fusion_l
(h1 : RCoalg F A) (g1 : Alg F B) (g2 : Alg F C) (f2 : B ~> C)
: f2 \o g1 =e g2 \o fmap f2 -> f2 \o hylo g1 h1 =e hylo g2 h1.

Lemma hylo_fusion_r
(h1 : RCoalg F B) (g1 : Alg F C) (h2 : RCoalg F A) (f1 : A ~> B)
: h1 \o f1 =e fmap f1 \o h2 -> hylo g1 h1 \o f1 =e hylo g1 h2.

It is important to highlight that, in our mechanisation, these proofs follow exactly
the steps that one would do in a pen-and-paper proof. We show the series
of rewrite steps for hylo_fusion_l in Figure 1. The steps of this proof are: (1)
apply the uniqueness law of recursive hylomorphisms; (2) rewrite the goal using
the property that functors preserve composition; (3) rewrite the goal using the
condition of hylo_fusion_l; (4) use the uniqueness law of hylomorphisms to fold
a ◦ F f ◦ c into f .

Proving the deforestation optimisation is a straightforward application of
hylo_fusion_l (or hylo_fusion_r).,

17

Lemma deforest (h1 : RCoalg F A) (g2 : Alg F C)
(g1 : Alg F B) (h2 : RCoalg F B) (INV: h2 \o g1 =e id)
: hylo g2 h2 \o hylo g1 h1 =e hylo g2 h1.

On the subtype of finite elements As we mention in Section 2, we define
recursive anamorphisms as hylomorphisms built by using a recursive coalgebra,
and the respective initial F-algebra. In other words, in this development we have
defined recursive anamorphisms on inductive data types. We might have as well
defined them on the subtype of finite elements of coinductive data types using a
predicate which states when an element of a coinductive data type is finite:

Inductive FinF : GFix F -> Prop :=
| FinF_fold (x : GFix F) : (forall e, FinF (cont (g_out x) e)) -> FinF x.

Now the subtype {x : GFix F | FinF x} of finite elements for GFix F is isomorphic
its corresponding the inductive data type LFix F. This is easy to see. We first
define a catamorphism ccata_f_ from the subtype {x : GFix F | FinF x} of finitary
elements of GFix F to any F-algebra.

Definition ccata_f_ `{eA : setoid A} (g : Alg F A)
: forall x : GFix F, FinF x -> A := fix f x H :=

let hx := g_out x in
g (MkCont (shape hx) (fun e => f (cont hx e) (FinF_inv H e))).

We now prove this is isomorphic to the least fixed-point of the functor F. We take
the catamorphism from the finite elements of GFix F to the inductive data type
LFix F using the F-algebra l_in. Its inverse is the catamorphism on the restriction
of g_in to the finite elements of GFix, which we denote by lg_in. The following
lemmas prove the isomorphism:

Lemma cata_ccata `{setoid A} : cata lg_in \o ccata l_in =e id.
Lemma ccata_cata `{setoid A} : ccata l_in \o cata lg_in =e id.

The finite subtype of GFix F allows us to compose catamorphisms and anamor-
phisms, by using the above isomorphism. In our work, however, we use recursive
anamorphisms, defined as follows for a recursive coalgebra c:

Definition rana c := hylo l_in c.

The main advantage of this definition is that recursive anamorphisms compose
with catamorphisms without the need to reason about termination and finiteness
of values of coinductive types.

5 Extraction

We go in this section through a series of case studies of various recursive algo-
rithms. We show how they can be encoded in our framework, how can we do
program calculation techniques for optimisation, and how can they be extracted to
idiomatic OCaml code. Our examples are the Quicksort and Mergesort algorithms
(Section 5.1), dynammic programming and Knapsack (Section 5.2), and examples
of the shortcut deforestation optimisation in our framework (Section 5.3).

18

5.1 Sorting Algorithms

Our first case study is divide-and-conquer sorting algorithms. Encoding them
in our framework will require the use of recursive hylomorphisms and termi-
nation proofs. We complete the sorting algorithm examples by applying fusion
optimisation.

Both mergesort and quicksort are divide-and-conquer algorithms that can be
captured by the structure of an hylomorphisms. The structure of the recursion is
that of a binary tree. For example, in the case of quicksort, a list is split into a
pivot, the label of the node, and two sublists. We define the data functor of trees
as follows:

Inductive ITreeF L N X := i_leaf (l : L) | i_node (n : N) (l r : X)

We define the functor as a container using the following shapes and positions:

Inductive Tshape L A := | Leaf (ELEM : L) | Node (ELEM : A).
Inductive Tpos := | Lbranch | Rbranch.

These define a container, TreeF, in a straightforward way, by making the positions
of type Tpos only valid in Node. We define a series of definitions for tree container
constructors and destructors:

Definition a_out {L A X : Type} : App (TreeF L A) X ~> ITreeF L A X.
Notation a_leaf x := (MkCont (Leaf _ x) (@dom_leaf _ _ _ x)).
Notation a_node x l r := (MkCont (Node _ x)
(fun p => match val p with | Lbranch => l | Rbranch => r end)).

The container for the Quicksort hylomorphism is TreeF unit int, with the follow-
ing algebra and coalgebra.

Definition merge : App (TreeF unit int) (list int) ~> list int.
|{ x : (App (TreeF unit int) (list int)) ~> (

match x with
| MkCont sx kx =>

match sx return (Container.Pos sx -> _) -> _ with
| Leaf _ _ => fun _ => nil
| Node _ h => fun k => List.app (k (posL h)) (h :: k (posR h))
end kx

end
)}|.

Defined.
Definition c_split : Coalg (TreeF unit int) (list int).
|{ x ~> match x with

| nil => a_leaf tt
| cons h t => let (l, r) := List.partition (fun x => x <=? h) t in

a_node h l r
end}|.

Defined.

We prove that the coalgebra c_split is recursive by showing that it respects
the “less-than” relation on the length of the lists. The code that we extract for
hylo merge c_split is the following:

19

let rec qsort = function
| [] -> [] | h :: t ->

let (l, r) = partition (fun x0 -> leb x0 h) t in
let x0 = fun e -> qsort (match e with | Lbranch -> l | Rbranch -> r) in
app (x0 Lbranch) (h :: (x0 Rbranch))

Note that Coq’s code extraction is unable to inline x0, but the resulting code
is similar to a hand-written qsort. The mergesort algorithm can be defined
analogously.

Fusing a divide-and-conquer computation As an example of how can we
use program calculation techniques in our framework, we show how another
traversal can be fused into the divide-and-conquer algorithm using the laws of
hylomorphisms. Suppose that we map a function to the result of sorting the list.
We can use our framework to fuse both computations. In particular, consider the
following definition:

Definition qsort_times_two := Lmap times_two \o hylo merge c_split.

Here, Lmap times_two is a list map function defined as a hylomorphism, and
times_two multiplies every element of the list by two. We can use Coq’s gener-
alised rewriting, and hylo_fusion_l to fuse times_two into the RHS hylomorphism
in qsort_times_two. After applying hylo fusion and the necessary rewrites, the
hylomorphism that we extract is hylo (merge \o natural times_two) c_split. In
this definition, natural defines a natural transformation by applying times_two to
the shapes, and times_two multiplies every pivot in the Quicksort tree by two. Our
formalisation contains a proof that natural is indeed a natural transformation,
which relies on the fact that it preserves the structure of the shapes and, therefore,
the validity of the positions. The extracted OCaml code is a single recursive
traversal:

let rec qsort_times_two = function | [] -> []
| h :: t -> let (l, r) = partition (fun x0 -> leb x0 h) t in

let x0 = fun p -> qsort_times_two (match p with
| Lbranch -> l | Rbranch -> r) in

app (x0 Lbranch) ((mul (Uint63.of_int (2)) h) :: (x0 Rbranch))

5.2 Knapsack

We focus now on the formalisation and extraction of dynamorphisms for dynamic
programming, by using their encoding as a hylomorphism. We use the knapsack
example from [20]. Dynamorphisms build a memoisation table that stores inter-
mediate results, alongside the current computation. The algebra used to define
a dynamorphism can access this memoisation table to speed up computation.
First, we define memoisation tables in terms of containers.

Definition MemoShape : Type := A * Sg.
Definition MemoPos := Pg.

20

Instance Memo : Cont MemoShape MemoPos
:= { valid := valid \o pair (snd \o fst) snd }.

Definition Table := LFix Memo.

Memoisation tables are the least fixed point of the container defined by shapes
A * Sg and positions Pg, given a a container G : Cont Sg Pg. We define a function
to insert elements into the memo tables:

Definition Cons : A * App G Table ~> App Memo Table := (* *)

And two functions, to inspect the head of a table, and remove an element:

Definition headT : Table ~> A := (* *)
Definition tailT : Table ~> App G Table := (* *)

These tables map “paths” in the least fixed point of Memo to elements of type A.
For example, if G is a list-generating functor, these paths will be natural numbers.
Using these definitions, a dynamorphism is defined as follows:

Definition dyna (a : App G Table ~> A) (c : RCoalg G B) : B ~> A
:= headT \o hylo (l_in \o Cons \o pair a id) c.

Note how, instead of an algebra App G A ~> A, the algebra takes a memo table.
The definition of the algebra can use this table to lookup elements, instead of
triggering a further recursive call. Elements are inserted into the memoisation
table by the use of Cons to the result of applying the algebra. The algebra for the
dynamorphism looks up the previously computed elements to produce the result,
thus saving the corresponding recursive calls:

Fixpoint memo_knap table wvs :=
match wvs with | nil => nil | h :: t =>

match lookupT (Nat.pred (fst h)) table with
| Some u => (u + snd h)%sint63 :: memo_knapsack table t
| None => memo_knapsack table t
end

end.
Definition knapsack_alg (wvs : list (nat * int))

(x : App NatF (Table NatF int)) : int :=
match x with | MkCont sx kx => match sx with
| inl tt => fun kx => 0%sint63
| inr tt => fun kx => let tbl := kx next_elem in max_int 0 (memo_knap tbl wvs)
end kx end.

Definition knapsackA wvs : App NatF (Table NatF int) ~> int := (* ... *)

The hylomorphism for knapsack is as follows, where out_nat is the recursive
coalgebra for nat.

Example knapsack wvs : Ext (dyna (knapsackA wvs) out_nat).

Coq’s code extraction mechanism is unable to inline several definitions in this
case. We have manually inlined the extracted code for simplicity. The reader can
check in our artefact that the extracted code can be trivially inlined to produce
the following:

21

let knapsack wvs x = let (y, _) = (let rec f x0 =
if x0=0 then

{ lFix_out = {shape = Uint63.of_int (0); cont = fun _ -> f 0 } }
else let fn := f (x0-1) in { lFix_out = {

shape = (max_int (Uint63.of_int (0)) (memo_knap fn wvs), sx);
cont = fun _ -> fn } }

in f x).lFix_out.shape in y

Note how the recursive calls of f build the memoisation table, and how this
memoisation table is used to compute the intermediate results in memo_knap, which
is finally discarded to produce the final result.

5.3 Shortcut Deforestation

The final case study we consider is shortcut deforestation on lists. Shortcut
deforestation can be expressed succintly in terms of hylomorphisms and their
laws [34]. In particular, given a function:

s : forall A. (App F A -> A) -> (App F A -> A)

We can conclude, by parametricity, that

hylo a l_out \o hylo (sigma l_in) c =e hylo (s a) c

This is generally known as the acid rain theorem. Unfortunately, this is not
provable in Coq if we want to remain axiom-free, since we would need to add
the necessary parametricity axiom [23]. However, we prove a specific version of
this theorem for the list generating container (i.e. the container whose least fixed
point is a list), and use it to encode the example from Takano and Meijer [34]:

Definition sf1 (f : A ~> B) ys : Ext (length \o Lmap f \o append ys).

Here, we are defining function sf1 as the composition of length, Lmap f and
append ys. Functions length and Lmap are catamorphisms. Function append ys is
also a catamorphism that appends ys to an input list. It is defined by applying
an algebra to every cons node of a list, and applying a catamorphism with the
input algebra to ys in the nil case:

Definition tau (l : list A) (a : Alg (ListF A) B) : App (ListF A) B -> B :=
fun x => match x with | MkCont sx kx => match sx with
| s_nil => fun _ => (hylo a ilist_coalg) l
| s_cons h => fun kx => a (MkCont (s_cons h) kx)
end kx end.

Definition append (l : list A) := hylo (tau l l_in) ilist_coalg.

Here, ilist_coalg is a recursive coalgebra from Coq lists to the ListF container.
We apply the hylo fusion law repeatedly, unfold definitions, and simplify in our
specification for sf1:

Definition sf1 (f : A ~> B) ys : Ext (length \o Lmap f \o append ys).
rewrite hylo_map_fusion, <- acid_rain. simpl; reflexivity.

Defined.

22

From this, we extract the following OCaml code:

let rec sf1 f ys =
function | [] -> let rec f0 = function

| [] -> (Uint63.of_int (0))
| _ :: t -> add (Uint63.of_int (1)) (f0 t)
in f0 ys

| _ :: t -> add (Uint63.of_int (1)) (sf1 f ys t)

We then prove that length fuses with the naive quadratic reverse function:

Definition sf2 : Ext (length \o reverse).
calculate. unfold length, reverse. rewrite hylo_fusion_l.
2:{ (* Rewrite into the fused version *) }
simpl; reflexivity.

Defined.

This code extracts to the optimised length function on the input list:

let rec ex2 = function | [] -> (Uint63.of_int (0))
| _ :: t -> add (Uint63.of_int (1)) (ex2 t)

6 Related Work

Encoding recursion schemes in Coq is not new. We compare our work with other
encodings of program calculation techniques and recursion schemes in Coq, and
discuss other approaches to fusion and to termination of nonstructural recursion.

6.1 Program Calculation

Within the domain of program optimization, program calculation serves as a
well-established programming technique aimed at deriving efficient programs
from their naive counterparts through systematic program transformation [14].
Programmers may specify algorithms abstractly at a high level, and then derive
an efficient implementation using the process of program calculation [4]. This
area has been extensively explored over the years.

Tesson et al. demonstrated the efficacy of leveraging Coq to establish an
approach for implementing a robust system dedicated to verifying the correctness
of program transformations for functions that manipulate lists [35]. Murata
and Emoto went further and formalised recursion schemes in Coq [30]. Their
development does not include hylomorphisms and dynamorphisms, and relies
on the functional extensionality axiom, as well as further extensionality axioms
for each coinductive datatype that they use. They do not discuss the extracted
OCaml code from their formalisation. Larchey-Wendling and Monin encode
recursion schemes in Coq, by formalising computational graphs of algorithms [24].
Their work does not focus on encoding generic recursion schemes, and proving
their algebraic laws. Castro-Perez et al. [7] encode the laws of hylomorphisms as
part of the type system of a functional language to calculate parallel programs

23

from specifications. Their work focuses on parallelism, and they do not formalise
their approach in a proof assistant, and the laws of hylomorphisms are axioms in
their system.

6.2 Divide and Conquer Recursion

Abreu et al. [2] encode divide-and-conquer computations in Coq, using a recursion
scheme in which termination is entirely enforced by its typing. This is a significant
advance, since it avoids completely the need for termination proofs. Their work
differs from ours in that they require the functional extensionality axiom, and
the use of impredicative Set. The authors justify well the use of impredicative
Set and its compatibility with the functional extensionality axiom. In contrast,
our development remains entirely axiom-free. Another key difference with our
approach is that they do not discuss what the resulting extracted code looks like.
Through experiments, we found that their formalisation leads to Obj.magic, and
code with a complex structure that may be hard to understand or interface with
other OCaml code. Due to the great benefit of entirely avoiding termination proofs,
it would be interesting to extend their approach to improve code extraction.

6.3 Termination Checking of Nonstructural Recursion

The problem of nonstructural recursion (including divide-and-conquer algorithms)
is well-studied [5]. Certain functions that are not structurally recursive can be re-
formulated using a nonstandard approach to achieve structural recursion [2]. Take,
for instance, division by iterated subtraction, which is inherently non-structurally
recursive since it involves recursion based on the result of a subtraction. There
is a nonstandard implementation of divivion found on Coq’s standard library,
which involves a four-argument function that effectively combines subtraction
and division. Similarly, the mergesort in Coq’s standard library uses an “explicit
stack of pending merges” in order to avoid issues with nonstructural definitions.
There is a major downside, however; as noted by Abreu et al., the result is “barely
recognizable as a form of mergesort” [2]. There are common approaches in Coq to
deal with termination, but none of these approaches address program calculation
techniques, and the mechanisation of fusion laws.

6.4 Fusion

Fusion in functional programming is a general technique for combining multiple
computations into a single pass to eliminate intermediate data structures and
improve efficiency. The fusion we have discussed in this paper relating to program
calculation is one form of fusion, but there are other approaches.

Deforestation, introduced by Wadler [36], is a specific approach to fusion
that aims to remove intermediate trees (such as lists) created between chained
operations. A well-known method of deforestation is foldr/build fusion [15],
which optimizes list-processing by fusing list-producing functions (like map or

24

filter) with list-consuming ones (like foldr), avoiding the creation of temporary
lists. Extending this idea, stream fusion generalizes the concept to handle other
data types, using a lazy stream abstraction to represent sequences and fuse
transformations like map and fold [8].

In the context of Coq, Danvy explains the use of fold/unfold lemmas to
mechanize equational reasoning about recursive programs [11]. Fold-unfold lem-
mas enable optimizations like fusion by allowing programs to be systematically
simplified, including eliminating intermediate structures. Additionally, an ap-
proach to fusion called the worker/wrapper transformation [16] was formalised
and mechanised in Agda [33].

7 Conclusions and Future Work

Hylomorphisms are a general recursion scheme that can encode any other recursion
scheme, and that satisfy a number of algebraic laws that can be used to reason
about program equivalences. To our knowledge, this is their first formalisation
in Coq. This is partly due to the difficulty of dealing with termination, and
reasoning about functional extensionality. In this work, we tackle these problems
in a fully axiom-free way that targets the extraction of idiomatic OCaml code.
This formalisation allows the use of program calculation techniques in Coq to
derive formally optimised implementations from naive specifications. Furthermore,
the rewritings that are applied to specifications are formal, machine-checked
proofs that the resulting program is extensionally equal to the input specification.

Remaining axiom-free forces us to deal with the well-known setoid hell. As part
of the future improvements, we will study how to mitigate this problem. At the
moment, we use a short ad-hoc tactic that is able to automatically discharge many
of these proofs in simple settings. We will study the more thorough and systematic
use of proof automation for respectful morphisms. Generalised rewriting in proofs
involving setoids tends to be quite slow, due to the large size of the terms that need
to be rewritten. Sometimes, this size is hidden in implicit arguments and coercions.
We will study alternative formulations to try to improve the performance of
the rewriting tactics (e.g. canonical structures). Currently, Coq is unable to
inline a number of trivially inlineable definitions. We will study alternative
definitions, or extensions to Coq’s code extraction mechanisms to force the full
inlining of all container code that is used in hylomorphisms. Finally, proving
termination still remains a hurdle. In our framework this reduces to proving
that the anamorphism terminates in all inputs, and we provide a convenient
connection to well-founded recursion. Furthermore, recursive coalgebras compose
with natural transformations, which allows the reuse of a number of core recursive
coalgebras. A possible interesting future line of work is the use of the approach
by Abreu et al. [2] in combination with ours to improve code extraction from
divide-and-conquer computations whose termination does not require an external
proof.

25

References

1. Michael Gordon Abbott, Thorsten Altenkirch, and Neil Ghani. Containers: Con-
structing strictly positive types. Theor. Comput. Sci., 342(1):3–27, 2005. URL:
https://doi.org/10.1016/j.tcs.2005.06.002, doi:10.1016/J.TCS.2005.06.002.

2. Pedro Abreu, Benjamin Delaware, Alex Hubers, Christa Jenkins, J. Garrett Morris,
and Aaron Stump. A type-based approach to divide-and-conquer recursion in coq.
Proc. ACM Program. Lang., 7(POPL), jan 2023. doi:10.1145/3571196.

3. Jirí Adámek, Stefan Milius, and Lawrence S. Moss. On well-founded and recursive
coalgebras. CoRR, abs/1910.09401, 2019. URL: http://arxiv.org/abs/1910.09401,
arXiv:1910.09401.

4. Richard S. Bird and Oege de Moor. The algebra of programming. In Manfred Broy,
editor, Proceedings of the NATO Advanced Study Institute on Deductive Program
Design, Marktoberdorf, Germany, pages 167–203, 1996.

5. Ana Bove, Alexander Krauss, and Matthieu Sozeau. Partiality and recursion in
interactive theorem provers – an overview. Mathematical Structures in Computer
Science, 26(1):38–88, 2016. doi:10.1017/S0960129514000115.

6. Venanzio Capretta, Tarmo Uustalu, and Varmo Vene. Recursive coalgebras from
comonads. In Jirí Adámek and Stefan Milius, editors, Proceedings of the Workshop
on Coalgebraic Methods in Computer Science, CMCS 2004, Barcelona, Spain,
March 27-29, 2004, volume 106 of Electronic Notes in Theoretical Computer Science,
pages 43–61. Elsevier, 2004. URL: https://doi.org/10.1016/j.entcs.2004.02.034,
doi:10.1016/J.ENTCS.2004.02.034.

7. David Castro-Perez, Kevin Hammond, and Susmit Sarkar. Farms, pipes, streams
and reforestation: reasoning about structured parallel processes using types and
hylomorphisms. In Proc. of the 21st ACM SIGPLAN International Conference
on Functional Programming, ICFP 2016, page 4–17. ACM, 2016. doi:10.1145/
2951913.2951920.

8. Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream fusion: from lists to
streams to nothing at all. In Proceedings of the 12th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’07, page 315–326, New York, NY,
USA, 2007. Association for Computing Machinery. doi:10.1145/1291151.1291199.

9. Alcino Cunha, Jorge Sousa Pinto, and José Proença. A framework for point-
free program transformation. In Andrew Butterfield, Clemens Grelck, and Frank
Huch, editors, Implementation and Application of Functional Languages, 17th
International Workshop, IFL 2005, Dublin, Ireland, September 19-21, 2005, Revised
Selected Papers, volume 4015 of Lecture Notes in Computer Science, pages 1–18.
Springer, 2005. doi:10.1007/11964681_1.

10. Nils Anders Danielsson, John Hughes, Patrik Jansson, and Jeremy Gibbons. Fast
and loose reasoning is morally correct. In J. Gregory Morrisett and Simon L. Peyton
Jones, editors, Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2006, Charleston, South Carolina,
USA, January 11-13, 2006, pages 206–217. ACM, 2006. doi:10.1145/1111037.
1111056.

11. OLIVIER DANVY. Fold–unfold lemmas for reasoning about recursive programs
using the coq proof assistant. Journal of Functional Programming, 32:e13, 2022.
doi:10.1017/S0956796822000107.

12. Yannick Forster, Matthieu Sozeau, and Nicolas Tabareau. Verified Extraction
from Coq to OCaml. working paper or preprint, November 2023. URL: https:
//inria.hal.science/hal-04329663.

26

https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1016/J.TCS.2005.06.002
https://doi.org/10.1145/3571196
http://arxiv.org/abs/1910.09401
https://arxiv.org/abs/1910.09401
https://doi.org/10.1017/S0960129514000115
https://doi.org/10.1016/j.entcs.2004.02.034
https://doi.org/10.1016/J.ENTCS.2004.02.034
https://doi.org/10.1145/2951913.2951920
https://doi.org/10.1145/2951913.2951920
https://doi.org/10.1145/1291151.1291199
https://doi.org/10.1007/11964681_1
https://doi.org/10.1145/1111037.1111056
https://doi.org/10.1145/1111037.1111056
https://doi.org/10.1017/S0956796822000107
https://inria.hal.science/hal-04329663
https://inria.hal.science/hal-04329663

13. Jeremy Gibbons. The third homomorphism theorem. Journal of Functional
Programming, 6(4):657–665, 1996. Earlier version appeared in C.B. Jay, editor,
Computing: The Australian Theory Seminar, Sydney, December 1994, p. 62–69. URL:
http://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/thirdht.ps.gz.

14. Jeremy Gibbons. The school of squiggol. In Formal Methods. FM 2019 International
Workshops, pages 35–53, Cham, 2020. Springer International Publishing.

15. Andrew Gill, John Launchbury, and Simon L. Peyton Jones. A short cut to defor-
estation. In Proceedings of the Conference on Functional Programming Languages
and Computer Architecture, FPCA ’93, page 223–232, New York, NY, USA, 1993.
Association for Computing Machinery. doi:10.1145/165180.165214.

16. Andy Gill and Graham Hutton. The worker/wrapper transformation. Journal of
Functional Programming, 19, 03 2009. doi:10.1017/S0956796809007175.

17. Georges Gonthier and Roux Le. An ssreflect tutorial. 01 2009.
18. Ralf Hinze, Thomas Harper, and Daniel W. H. James. Theory and practice of

fusion. In Jurriaan Hage and Marco T. Morazán, editors, Implementation and
Application of Functional Languages - 22nd International Symposium, IFL 2010,
Alphen aan den Rijn, The Netherlands, September 1-3, 2010, Revised Selected
Papers, volume 6647 of Lecture Notes in Computer Science, pages 19–37. Springer,
2010. doi:10.1007/978-3-642-24276-2_2.

19. Ralf Hinze and Nicolas Wu. Unifying structured recursion schemes - an extended
study. J. Funct. Program., 26:e1, 2016. doi:10.1017/S0956796815000258.

20. Ralf Hinze, Nicolas Wu, and Jeremy Gibbons. Conjugate hylomorphisms - or:
The mother of all structured recursion schemes. In Sriram K. Rajamani and
David Walker, editors, Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India,
January 15-17, 2015, pages 527–538. ACM, 2015. doi:10.1145/2676726.2676989.

21. Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. Deriving structural hylomor-
phisms from recursive definitions. In Robert Harper and Richard L. Wexelblat,
editors, Proceedings of the 1996 ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 1996, Philadelphia, Pennsylvania, USA, May 24-26,
1996, pages 73–82. ACM, 1996. doi:10.1145/232627.232637.

22. Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. The power of
parameterization in coinductive proof. In Roberto Giacobazzi and Radhia Cousot,
editors, The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013, pages
193–206. ACM, 2013. doi:10.1145/2429069.2429093.

23. Chantal Keller and Marc Lasson. Parametricity in an Impredicative Sort.
In Patrick Cégielski and Arnaud Durand, editors, Computer Science Logic
(CSL’12) - 26th International Workshop/21st Annual Conference of the EACSL,
volume 16 of Leibniz International Proceedings in Informatics (LIPIcs), pages
381–395, Dagstuhl, Germany, 2012. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. URL: https://drops-dev.dagstuhl.de/entities/document/10.4230/
LIPIcs.CSL.2012.381, doi:10.4230/LIPIcs.CSL.2012.381.

24. Dominique Larchey-Wendling and Jean-François Monin. The braga method: Ex-
tracting certified algorithms from complex recursive schemes in coq. In PROOF
AND COMPUTATION II: From Proof Theory and Univalent Mathematics to
Program Extraction and Verification, pages 305–386. World Scientific, 2022.

25. Dominique Larchey-Wendling and Jean-François Monin. Proof pearl: Faithful
computation and extraction of µ-recursive algorithms in coq. In Adam Naumowicz
and René Thiemann, editors, 14th International Conference on Interactive Theorem

27

http://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/thirdht.ps.gz
https://doi.org/10.1145/165180.165214
https://doi.org/10.1017/S0956796809007175
https://doi.org/10.1007/978-3-642-24276-2_2
https://doi.org/10.1017/S0956796815000258
https://doi.org/10.1145/2676726.2676989
https://doi.org/10.1145/232627.232637
https://doi.org/10.1145/2429069.2429093
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2012.381
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2012.381
https://doi.org/10.4230/LIPIcs.CSL.2012.381

Proving, ITP 2023, July 31 to August 4, 2023, Białystok, Poland, volume 268
of LIPIcs, pages 21:1–21:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2023. URL: https://doi.org/10.4230/LIPIcs.ITP.2023.21, doi:10.4230/LIPICS.
ITP.2023.21.

26. Erik Meijer, Maarten M. Fokkinga, and Ross Paterson. Functional programming
with bananas, lenses, envelopes and barbed wire. In John Hughes, editor, Func-
tional Programming Languages and Computer Architecture, 5th ACM Conference,
Cambridge, MA, USA, August 26-30, 1991, Proceedings, Lecture Notes in Computer
Science. Springer, 1991. doi:10.1007/3540543961_7.

27. Nax Paul Mendler. Inductive types and type constraints in the second-order lambda
calculus. Ann. Pure Appl. Log., 51(1-2):159–172, 1991. doi:10.1016/0168-0072(91)
90069-X.

28. Marino Miculan and Marco Paviotti. Synthesis of distributed mobile programs using
monadic types in coq. In Lennart Beringer and Amy P. Felty, editors, Interactive
Theorem Proving - Third International Conference, ITP 2012, Princeton, NJ, USA,
August 13-15, 2012. Proceedings, volume 7406 of Lecture Notes in Computer Science,
pages 183–200. Springer, 2012. doi:10.1007/978-3-642-32347-8_13.

29. Akimasa Morihata, Kiminori Matsuzaki, Zhenjiang Hu, and Masato Takeichi. The
third homomorphism theorem on trees: downward & upward lead to divide-and-
conquer. In Zhong Shao and Benjamin C. Pierce, editors, Proceedings of the 36th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2009, Savannah, GA, USA, January 21-23, 2009, pages 177–185. ACM,
2009. doi:10.1145/1480881.1480905.

30. Kosuke Murata and Kento Emoto. Recursion schemes in coq. In Anthony Widjaja
Lin, editor, Programming Languages and Systems, pages 202–221, Cham, 2019.
Springer International Publishing.

31. Kosuke Ono, Yoichi Hirai, Yoshinori Tanabe, Natsuko Noda, and Masami Hagiya.
Using coq in specification and program extraction of hadoop mapreduce appli-
cations. In Gilles Barthe, Alberto Pardo, and Gerardo Schneider, editors, Soft-
ware Engineering and Formal Methods - 9th International Conference, SEFM
2011, Montevideo, Uruguay, November 14-18, 2011. Proceedings, volume 7041
of Lecture Notes in Computer Science, pages 350–365. Springer, 2011. doi:
10.1007/978-3-642-24690-6_24.

32. Kazuhiko Sakaguchi. Program extraction for mutable arrays. Science of Computer
Programming, 191:102372, 2020. URL: https://www.sciencedirect.com/science/
article/pii/S0167642319301650, doi:10.1016/j.scico.2019.102372.

33. Neil Sculthorpe and Graham Hutton. Work it, wrap it, fix it, fold it. Journal of
Functional Programming, 24(1):113–127, 2014. doi:10.1017/S0956796814000045.

34. Akihiko Takano and Erik Meijer. Shortcut deforestation in calculational form. In
Proceedings of the Seventh International Conference on Functional Programming
Languages and Computer Architecture, FPCA ’95, page 306–313, New York, NY,
USA, 1995. Association for Computing Machinery. doi:10.1145/224164.224221.

35. Julien Tesson, Hideki Hashimoto, Zhenjiang Hu, Frédéric Loulergue, and Masato
Takeichi. Program calculation in coq. In Michael Johnson and Dusko Pavlovic,
editors, Algebraic Methodology and Software Technology, pages 163–179, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

36. Philip Wadler. Deforestation: transforming programs to eliminate trees. Theor.
Comput. Sci., 73(2):231–248, January 1988. doi:10.1016/0304-3975(90)90147-A.

28

https://doi.org/10.4230/LIPIcs.ITP.2023.21
https://doi.org/10.4230/LIPICS.ITP.2023.21
https://doi.org/10.4230/LIPICS.ITP.2023.21
https://doi.org/10.1007/3540543961_7
https://doi.org/10.1016/0168-0072(91)90069-X
https://doi.org/10.1016/0168-0072(91)90069-X
https://doi.org/10.1007/978-3-642-32347-8_13
https://doi.org/10.1145/1480881.1480905
https://doi.org/10.1007/978-3-642-24690-6_24
https://doi.org/10.1007/978-3-642-24690-6_24
https://www.sciencedirect.com/science/article/pii/S0167642319301650
https://www.sciencedirect.com/science/article/pii/S0167642319301650
https://doi.org/10.1016/j.scico.2019.102372
https://doi.org/10.1017/S0956796814000045
https://doi.org/10.1145/224164.224221
https://doi.org/10.1016/0304-3975(90)90147-A

	Mechanising Hylomorphisms for Extraction of Executable Code

