
A Taste of Categorical Semantics

Marco Paviotti

January 22, 2025

Contents
1 Introduction 2

2 Elements of Set Theory 3
2.0.1 Relations and Functions . 4
2.0.2 Cardinality and Isomorphism 4
2.0.3 Indexed Families of Sets . 4
2.0.4 The Russel’s Paradox . 5
2.0.5 The Axiom of Regularity (Foundation) 5

3 Categories 6
3.1 Initial and terminal objects . 7
3.2 The Natural Numbers object . 7
3.3 Isomorphisms . 8
3.4 Opposite categories . 9

4 Products, CoProducts and Exponentials 9
4.1 Products . 9
4.2 Coproducts . 11
4.3 Exponentials . 12
4.4 Semantics of the Simply Typed 𝜆-Calculus 13

4.4.1 Syntax . 13
4.4.2 Semantics . 14

4.5 Exercises . 15

5 Functors and Natural Transformations 16
5.1 Categories of Functors . 17
5.2 Categories of Categories . 17
5.3 The Homset Functor . 17

5.3.1 Natural Isomorphisms . 18

6 Limits and Colimits 19
6.1 Algebraic Data Types as Limits and Colimits 20

1

7 Adjunctions 21
7.0.1 Adjunctions . 21

7.1 Instances of Adjunctions . 21
7.1.1 Initial and Terminal Objects 21
7.1.2 (Co)products and Products 22
7.1.3 Exponentials . 22
7.1.4 (Co)Limits . 22

7.2 Semantics of Predicative Polymorphism 23
7.2.1 Syntax . 24
7.2.2 Semantics . 25

8 Monads 27
8.0.1 Adjunctions determine Monads 28

8.1 The Kleisli Category . 28
8.2 The Computational 𝜆-calculus . 29

8.2.1 Syntax . 29
8.2.2 Semantics . 29

1 Introduction
When learning an abstract mathematical concept, it is helpful to have a concrete notion
of the subject being studied; without this, the abstraction may lack meaningful context.
There are probably two approaches to learning category theory in computer science:
through the lens of mathematics or through that of functional programming. While the
mathematical perspective is arguably the most rigorous, many computer scientists may
find the functional programming perspective more accessible. Indeed, some authors
have already chosen to adopt this path [6].

In these notes, we take a different approach – one which lies between mathematics
and programming languages. This approach aligns with the mathematical treatment of
programming languages known as denotational semantics. The idealized concept in
this context is that a type can be viewed as a set, and a program as a function between
sets. However, as programming languages incorporate more features, maintaining this
simplistic view becomes increasingly challenging. By employing category theory, we
generalize this perspective: a type corresponds to an object, and a program corresponds
to an arrow. With this idea in mind, we will model the simply typed 𝜆-calculus,
predicative polymorphism and 𝜆-calculi with computational effects.

For the interested reader who wants to dive deeper in these subjects, there is a
plethora of very well-written books about category for a more in-depth introduction on
the subject [1, 4].

In these notes, we will try to convince the reader that category theory covers a
wide variety of subjects; from logic to type theory, hence programming, algebra and
topology and it is therefore a subject worth studying for the reader’s own good.

To give a taste for why this is true let us look at three most common axioms which
we can find in logic, type theory and algebra. In particular, reflexivity and transitivity.
Reflexivity states that every proposition 𝐴 entails itself, writen 𝐴 ⊢ 𝐴 in logic. In type

2

theory, this corresponds to the variable rule, which states that if a variable 𝑥 has type 𝐴,
written 𝑥 : 𝐴, then we can type check the program 𝑥 : 𝐴. Similarly, transitivity ensures
that proofs of propositions can be chained: if 𝐴 entails 𝐵 and 𝐵 entails 𝐶 then 𝐴 entails
𝐶. This is similar to what happens in type theory: if 𝑡 is a program of type 𝐵 with an
open variable of type 𝐴 and 𝑡′ is a program of type 𝐶 open in 𝑦 : 𝐵 then substituting 𝑡

for 𝑦 in 𝑡′ yields a program of type 𝐶 open in 𝑥 : 𝐴. In algebra, a preorder has exactly
the same properties as for all 𝐴 in a preorder we have 𝐴 ≤ 𝐴 and for all 𝐴, 𝐵, 𝐶, if
𝐴 ≤ 𝐵 and 𝐵 ≤ 𝐶 then obviously 𝐴 ≤ 𝐶. The table below summarises the concepts
we explained so far:

Logic Type Theory Algebra
𝐴 ⊢ 𝐴 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴 𝐴 ≤ 𝐴

𝐴 ⊢ 𝐵 𝐵 ⊢ 𝐶
𝐴 ⊢ 𝐶

𝑥 : 𝐴 ⊢ 𝑡 : 𝐵 𝑦 : 𝐵 ⊢ 𝑡′ : 𝐶
𝑥 : 𝐴 ⊢ {𝑡/𝑦}𝑡′ : 𝐶

𝐴 ≤ 𝐵 𝐵 ≤ 𝐶

𝐴 ≤ 𝐶

It should now be evident that three seemingly disconnected areas of mathematics –
logic, computer science, and algebra – are deeply interconnected. This connection has
been termed computational trinitarianism, the idea that logic, type theory, and algebra
are three perspectives on the same underlying objects. This perspective reinforces the
thesis that computability is an inherent concept in the foundations of mathematics.

In 1945, Saunders MacLane and Samuel Eilenberg, while working on algebraic
topology, observed recurring patterns in algebra that could be generalized. He developed
an abstract axiomatization encompassing many aspects of algebra, which led to the
formulation of the axioms of a category [4]. A category consists of objects and
morphisms (arrows) between them, governed by two fundamental axioms. The first,
identity, reflects reflexivity by requiring an identity morphism id𝐴 : 𝐴 → 𝐴 for every
object. The second, composition, embodies transitivity by allowing morphisms 𝑓 :
𝐴→ 𝐵 and 𝑔 : 𝐵→ 𝐶 to compose into 𝑔 ◦ 𝑓 : 𝐴→ 𝐶.

𝐴 𝑖𝑑𝐴 𝐴 𝐵 𝐶
𝑓 𝑔

𝑔◦ 𝑓

The reader is encouraged to keep these analogies in mind throughout this article, as
they provide intuitive insights into the abstract categorical concepts we will explore.

Lastly, since category theory is formulated on top of set theory, we will briefly
recap the basic notions of sets, size, families of sets, and Russell’s Paradox in the
next section. The Russell’s Paradox, in particular, is a pivotal result in naive set theory,
offering insights into the design choices behind category theory and highlighting certain
challenges related to polymorphism in programming languages.

2 Elements of Set Theory
A set (or class) is an unordered collection of objects called elements. If an object 𝑎 is
an element of a set 𝑋 , we write 𝑎 ∈ 𝑋 and say “𝑎 belongs to 𝑋 .”

3

One of the most fundamental sets is the empty set, denoted ∅, which contains no
elements. It is important to distinguish between ∅ and the singleton set {∅}, which
contains the empty set as its only element.

Other notable sets include the set of natural numbers, N = {1, 2, 3, . . . }, and the set
of natural numbers with zero, N0 = {0, 1, 2, 3, . . . }.

Given two sets 𝐴 and 𝐵, we can construct their Cartesian product, 𝐴 × 𝐵, which
is the set of all ordered pairs (𝑎, 𝑏) such that 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. Similarly, the union
of two sets 𝐴 and 𝐵, written 𝐴 ∪ 𝐵, is the set containing all elements of 𝐴 and 𝐵,
with duplicates removed. A related concept is the disjoint union, 𝐴 ⊎ 𝐵, which pairs
elements with tags to distinguish their origin: (1, 𝑎) for 𝑎 ∈ 𝐴 and (2, 𝑏) for 𝑏 ∈ 𝐵.

2.0.1 Relations and Functions

A relation 𝑅 ⊆ 𝐴×𝐵 is a subset of the Cartesian product 𝐴×𝐵, linking certain elements
of 𝐴 to elements of 𝐵. A function is a special type of relation 𝑓 ⊆ 𝐴 × 𝐵 such that for
every 𝑎 ∈ 𝐴, there exists exactly one 𝑏 ∈ 𝐵 related to it. The set of all functions from
𝐴 to 𝐵 is denoted 𝐴→ 𝐵.

Two special cases of functions are worth noting. First, there is only one function
from the empty set ∅ to any set 𝐴, which is the empty relation ! ⊆ ∅ × 𝐴. Second, there
is only one function from any set 𝐴 to a singleton set {∗}, which maps every element
𝑎 ∈ 𝐴 to ∗. This function is also denoted !, and its meaning is typically clear from
context.

2.0.2 Cardinality and Isomorphism

The size or cardinality of a set measures how many elements it contains. Two sets are
said to have the same cardinality, or to be isomorphic, if there exists a bijective function
𝑓 : 𝐴 → 𝐵 with an inverse 𝑓 −1 : 𝐵 → 𝐴 such that 𝑓 (𝑓 −1 (𝑥)) = 𝑥 and 𝑓 −1 (𝑓 (𝑥)) = 𝑥

for all 𝑥.
A set 𝐴 is finite if it is isomorphic to the set {𝑚 ∈ N | 𝑚 ≤ 𝑛} for some 𝑛 ∈ N. In

this case, we can enumerate its elements as 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}. A set is infinite if it
is not finite. A set is countable if it is isomorphic to the natural numbers N.

2.0.3 Indexed Families of Sets

For a set 𝐼, an indexed family of sets is a collection of sets {𝐴𝑖}𝑖∈𝐼 , where each set 𝐴𝑖

is associated with an index 𝑖 ∈ 𝐼. If 𝐼 is finite, we can write the union and Cartesian
product of these sets as:

𝐴1 ∪ 𝐴2 ∪ · · · ∪ 𝐴𝑛 and 𝐴1 × 𝐴2 × · · · × 𝐴𝑛.

If 𝐼 is infinite, the union of the family is:⋃
𝑖∈𝐼

𝐴𝑖 = {𝑎 ∈ 𝐴𝑖 | 𝑖 ∈ 𝐼},

4

and the dependent product (or infinite product) is the set of functions 𝑓 : 𝐼 → ⋃
𝑖∈𝐼 𝐴𝑖

such that 𝑓 (𝑖) ∈ 𝐴𝑖 for all 𝑖 ∈ 𝐼:

Π𝑖∈𝐼𝐴𝑖 = { 𝑓 : 𝐼 →
⋃
𝑖∈𝐼

𝐴𝑖 | 𝑓 (𝑖) ∈ 𝐴𝑖}.

2.0.4 The Russel’s Paradox

Russell’s Paradox is a fundamental problem in set theory, discovered by Bertrand Russell
in 1901. It reveals a contradiction in naive set theory, which allowed the formation of
any set based on a defining property, without restrictions. The paradox shows that such
a theory can lead to logical inconsistencies.

The paradox arises when we consider the set of all sets that do not contain themselves
as a member. Let’s define this set as 𝑅. Formally, 𝑅 is the set of all sets that do not
contain themselves as a member. In other words:

𝑅 = {𝑥 | 𝑥 ∉ 𝑥}

Here, 𝑅 is the set of all sets 𝑥 such that 𝑥 does not contain itself as a member.
Now, the central question of the paradox is: Does the set 𝑅 contain itself?
To answer this, we explore two possibilities. The case when 𝑅 ∈ 𝑅 and the case

when 𝑅 ∉ 𝑅. If 𝑅 is a member of itself, then by the definition of 𝑅, it must not contain
itself (because 𝑅 is the set of all sets that do not contain themselves). Therefore, if
𝑅 ∈ 𝑅, it must follow that 𝑅 ∉ 𝑅, which is a contradiction. If 𝑅 is not a member of
itself, then by the definition of 𝑅, it must contain itself (because 𝑅 is the set of all sets
that do not contain themselves, and 𝑅 would be one of those sets). Therefore, if 𝑅 ∉ 𝑅,
it must follow that 𝑅 ∈ 𝑅, which is also a contradiction.

This contradiction shows that the assumption that such a set 𝑅 can exist leads to an
inconsistency. The paradox demonstrates that naive set theory, which allowed for the
creation of sets like 𝑅, is inherently flawed.

2.0.5 The Axiom of Regularity (Foundation)

The Axiom of Regularity, also known as the Axiom of Foundation, is one of the
axioms in Zermelo-Fraenkel set theory (ZF), designed to prevent certain paradoxes like
Russell’s Paradox.

The Axiom of Regularity states:

∀𝐴 (𝐴 ≠ ∅ ⇒ ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴 = ∅))

This means that for every non-empty set 𝐴, there exists an element 𝑥 ∈ 𝐴 such that 𝑥
and 𝐴 are disjoint sets.

The Axiom of Regularity essentially says that no set can be a member of itself
(directly or indirectly), and it prevents sets from containing themselves or forming
cycles. In other words, it ensures that sets are well-founded, meaning they cannot ”loop
back” on themselves in any way.

5

In the case of Russell’s Paradox, we defined a set 𝑅 as:

𝑅 = {𝑥 | 𝑥 ∉ 𝑥}

The paradox arose because the set 𝑅 seemed to both contain itself and not contain itself,
depending on the assumption. The Axiom of Regularity helps avoid such contradictions
by ensuring that no set can be a member of itself. It guarantees that sets like 𝑅, which
would allow self-referencing and circular definitions, cannot exist.

Let 𝐴 be a set, and apply the axiom of regularity to the singleton set containing 𝐴,
that is {𝐴}. By the axiom of regularity there must be an element of 𝐴 which is disjoint
from {𝐴}. Since 𝐴 is the only element of {𝐴}, it must be that 𝐴 is disjoint from {𝐴}.
Therefore, since 𝐴 ∩ {𝐴} = ∅ that means that 𝐴 does not contain itself by definition of
intersection.

3 Categories
As explained above, the intuition the reader should have is that when talking about
well-typed programming languages, types should be regarded as objects and programs
should be regarded as arrows. This sort of motivates the definition of a category:

Definition 3.1 (Category). A category C is a collection of objects 𝐴, 𝐵, 𝐶 . . . denoted
by Obj(C) and a set of arrows 𝑓 , 𝑔, ℎ . . . denoted by Arr(C). Additionally, for each
object 𝐴 there exists an identity arrow 𝑖𝑑𝐴 : 𝐴→ 𝐴 such that and for arrows 𝑓 : 𝐴→ 𝐵

and 𝑔 : 𝐵→ 𝐶 we there exists an arrow 𝑔 ◦ 𝑓 : 𝐴→ 𝐶. We picture these as mentioned
in the introduction:

𝐴 𝑖𝑑𝐴 𝐴 𝐵 𝐶
𝑓 𝑔

𝑔◦ 𝑓

Additionally, these arrows obey the identity and associativity laws:

𝑖𝑑𝐴 ◦ 𝑓 = 𝑓 ◦ 𝑖𝑑𝐴 = 𝑓

𝑓 ◦ (𝑔 ◦ ℎ) = (𝑓 ◦ 𝑔) ◦ ℎ

Examples of categories are the category of sets, denoted by Set, where objects are
sets and arrows are functions, the category of sets and relations Rel, the category of
partial order sets Pos, the category of groups Grp of groups and group homomorphisms,
the category of topological spaces Top of topological spaces and continuous functions
between them.

To avoid clutter, we simply write 𝑋 ∈ C for an object in a category C and 𝑓 ∈ C for
a morphism in a category C. For objects 𝑋,𝑌 ∈ C we write C(𝑋,𝑌) for the collection
of morphisms from 𝑋 to 𝑌 which we call the homset.

The fact that a category is defined in terms of collections objects and morphisms
is to avoid paradoxes such as the one in Section 2.0.4. For example, the category Set
is too big for the objects to form a set, since the set of sets does not exists. When the
collection of objects is a set we say the category is small. Similarly when the homset is
a set we say the category is locally small.

6

3.1 Initial and terminal objects
In logic a false proposition entails any formula 𝐴. In category theory this is expressed
in terms of initial objects. The initial object is an object denoted by 0 such that for every
other object 𝐴 there exist a unique arrow between 0 and 𝐴. We draw a dashed arrow as
follows to indicate the arrow is unique:

0 𝐴
!𝐴

In other words, there is a unique proof which takes a proof of the false statement and
returns a proof of any statement 𝐴. This can also be interpreted in programming as
the program from the empty type into any type. Intuitively, the only way to produce
something of type 𝐴 is to case analyse on the empty type, but because this type does not
contain anything the program has nothing further to compute and the case is vacuous.

Similarly, the terminal object 1 represent the true statement or the type with only
one element in it, the unit type. In programming terms, given any input of type 𝐴 there
exists exactly one program producing an element of the unit type, that is the program
which discards the input and returns the single element in the unit type. Categorically,
and it is such that for every object 𝐴 there is a unique arrow into the terminal object:

𝐴 1!𝐴

It is important to know that such objects in category theory are unique only up-to
isomorphism.

In Set, the empty set ∅ is the initial object since there is a unique function from the
empty set to any other set 𝐴, that is the empty function or empty relation. Similarly, the
terminal object is any set containing exactly one element, the singleton set. Consider
the set {∗}. For any other given set 𝐴 there is a unique function into {∗} which is the
constant function mapping every element 𝑥 ∈ 𝐴 into {∗}. Notice that there are many
terminal objects in Set, but they are all isomorphic in that they all contain only one
element. Also Set is a special category of sorts, in fact, it enjoys the property that the
set of morphisms from 1 to any set 𝐴 is isomorphic to 𝐴 itself since any function 1 𝑥−→ 𝐴

can map into exactly one element in 𝐴.

Exercise 3.1. Prove that for all sets 𝑋 ∈ Set, the homset Set(1, 𝑋) is in bijective
correspondence with 𝑋 .

3.2 The Natural Numbers object
The natural numbers object (NNO) is an abstract representation of the natural numbers
N within a category. It consists of an object N along with two morphisms: the zero
morphism 1 𝑧−→ N and the successor morphism N

𝑠−→ N These morphisms encode
the structure of the natural numbers, with 𝑧corresponding to the base element 0 𝑠

representing the successor function, which maps a number 𝑛 ↦→ 𝑛 + 1.
The NNO is characterized by a universal property: for any object 𝑋 in the category

and any pair of morphisms 1
𝑓
−→ 𝑋 (representing a base case) and 𝑋

𝑔
−→ 𝑋 (representing

7

a recursive step), there exists a unique morphism N
ℎ−→ N such that ℎ ◦ 𝑧 = 𝑓 and

ℎ ◦ 𝑠 = 𝑔 ◦ ℎ

1 N N

𝑋 𝑋

𝑧

𝑓
ℎ

𝑠

ℎ

𝑔

This abstract construction provides a general way to represent natural numbers and their
properties in various categories, such as the category of sets or more complex structures
like toposes.

3.3 Isomorphisms
Isomorphism is a fundamental concept that captures the idea of two objects being
“essentially the same”. An isomorphism between two objects indicates that they are
structurally identical, even if they might appear different externally. While the concept
of “essentially the same” is central to isomorphism, it is not always straightforward to
understand what this means in different settings. An isomorphism in Set is a pair of
functions which are inverses to each other. This corresponds to saying that two sets are
isomorphism if they have the same cardinality, which is equivalent to saying that there
exists a function 𝑓 : 𝐴→ 𝐵 such that is surjective and injective.

However, consider the the category Pos of partial order sets and order preserving
functions. The following are two posets which are not isomorphic:

1 2 1 2

⊥ ⊥

since in the right-hand side poset the ⊥ element is not ordered with 1. Despite the
fact that these two posets are in bijection they are not isomorphic because any bijection
would be able to preserve the order ⊥ ≤ 1 from the left to the right-hand side poset
(while still being a bijection).

Category theory abstracts the notion of isomorphism by stating that two objects are
isomorphic if and only if there exists a pair of morphisms which are inverse to each
other

Definition 3.2 (Isomorphism). Two given objects 𝐴 and 𝐵 are isomorphic, written
𝐴 � 𝐵 iff there exists an arrow 𝑓 : 𝐴→ 𝐵 that has an inverse 𝑔 : 𝐵→ 𝐴 such that

𝑔 ◦ 𝑓 = 𝑖𝑑𝐴 𝑓 ◦ 𝑔 = 𝑖𝑑𝐵

This definition depends of course on the definition of morphism, in particular, an
isomorphism is defined by what the arrows look like and by what we can observe
through them rather than what are the objects themselves.

Exercise 3.2. Let 𝑋 and 𝑌 be two initial objects. Prove that 𝑋 � 𝑌 . Conclude that
initial objects are unique up-to isomorphism.

8

Exercise 3.3. Let 0
!𝐴−−→ 𝐴 be the unique morphism from the initial object into an object

𝐴 and 𝐴
𝑓
−→ 𝐵 be a morphism. Prove that 𝑓 ◦!𝐴 is equal to !𝐵.

3.4 Opposite categories
An opposite category refers to a way of reversing the structure of a given category. If
we have a category C, its opposite category, denoted Cop, is formed by reversing the
direction of all morphisms while keeping the same objects.

Definition 3.3 (Opposite category). For a category C, there is a category Cop which
has as objects the same objects as C and for every morphism 𝑓 : 𝐴 → 𝐵 in C a
morphism 𝑓 op : 𝐵→ 𝐴

𝑓 ∈ C(𝑋,𝑌) ⇐⇒ 𝑓 op ∈ Cop (𝑌, 𝑋)

In other words, for every morphism 𝑓 : 𝐴 → 𝐵 in C, there is a corresponding
morphism 𝑓 op : 𝐵 → 𝐴 in Cop. The composition of morphisms in Cop is defined in
reverse order compared to C, meaning that if 𝑓 : 𝐴→ 𝐵 and 𝑔 : 𝐵→ 𝐶 are morphisms
in C, their composition in Cop is given by 𝑔op ◦ 𝑓 op, corresponding to (𝑓 ◦ 𝑔)op in C.

The opposite category is a useful tool for exploring dualities, where a statement
about C has a corresponding dual statement about Cop. We will go back to this topic
when we introduce the concept of a functor in Section 5.

4 Products, CoProducts and Exponentials
In this section we are going to take a look at the categorical semantics of the simply
typed 𝜆-calculus. This is a 𝜆-calculus with natural numbers, pairs and function types
therefore it is only natural that to model these we need their logical and algebraic
counterparts.

4.1 Products
In logic, the and operator is introduced by stating that if Γ is a set of true propositions
which entails 𝐴 and this context Γ entails also 𝐵 then of course Γ ⊢ 𝐵. This is called
the introduction rule of the product:

Γ ⊢ 𝐴 Γ ⊢ 𝐵
Γ ⊢ 𝐴 ∧ 𝐵

The product has also two elimination rules given by:

Γ ⊢ 𝐴 ∧ 𝐵

Γ ⊢ 𝐴
Γ ⊢ 𝐴 ∧ 𝐵

Γ ⊢ 𝐵
In algebra, a set which possess this structures is called a lower semilattice. That is

a set 𝑋 such that for every 𝑎, 𝑏 ∈ 𝑋 , there exists an element 𝑎 ∧ 𝑏 called the meet or

9

the greatest lower bound of 𝑎 and 𝑏 which has the property that for every other lower
bound 𝑧, that is 𝑧 ≤ 𝑎 and 𝑧 ≤ 𝑏 we have that 𝑧 ≤ 𝑎 ∧ 𝑏.

𝑥 𝑦

𝑥 ∧ 𝑦

𝑧

≤ ≤

≤ ≤

≤

We proceed now to generalise the concept of greatest lower bound to the categorical
notion of product 𝐴 × 𝐵.
Definition 4.1 (Product). For two objects 𝐴 and 𝐵 the product is an object 𝑃 equipped
with two arrows 𝜋1 : 𝑃 → 𝐴 and 𝜋2 : 𝑃 → 𝐵 such that for any object 𝑍 with arrows
𝑓 : 𝑍 → 𝐴 and 𝑔 : 𝑍 → 𝐵 there exists a unique morphism ℎ : 𝑍 → 𝑃 making the
following diagram commute:

𝐴 𝑃 𝐵

𝑍

𝑓 𝑔

𝜋2𝜋1

ℎ

We write 𝐴 × 𝐵 for the product of two objects 𝐴 and 𝐵 and ⟨ 𝑓 , 𝑔⟩ for ℎ.
Note that this definition corresponds to the notion of product in Set

𝐴 × 𝐵
Δ
= {⟨𝑎, 𝑏⟩ | 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵}

where the projections 𝜋1 and 𝜋2 are simply the functions discarding one component of
the pair 𝜋1 (𝑎, 𝑏) = and 𝜋2 (𝑎, 𝑏) = 𝑏 and for every element 1 𝑎−→ 𝐴 and 1 𝑏−→ 𝐵 the
pairing is defined by (𝑎, 𝑏) ↦→ ⟨𝑎, 𝑏⟩ Note that the existence condition of the pairing
function enforces that every element of 𝐴 and 𝐵 are in the product (no noise) and the
uniqueness condition ensures that there is are no more elements in 𝐴 × 𝐵 than the ones
that are coming from 𝐴 and 𝐵 (no junk).

Notice also that we could have defined the product in many other ways, but as long
as the categorical definition is satisfied, all these definitions are isomorphic. The reader
should convince themselves that is true by proving the following proposition:
Proposition 4.1 (Products are unique up to isomorphism). Let C be a category with
products. Then for all objects 𝐴 and 𝐵, if 𝑃 and 𝑄 are both products of 𝐴 and 𝐵 then
𝑃 � 𝑄.

Another isomorphic definition of product in Set could be the following one:

𝐴 × 𝐵 = {(𝑏, 𝑎) | 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵}
or this one

𝐴 × 𝐵 = {(𝑏, 𝑎, 𝑎) | 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵}
Exercise 4.1. Prove Proposition 4.1. Hint: you have to prove that for two objects 𝐴

and 𝐵 if you have two products 𝑃 and 𝑃′ for the same two objects you can derive an
isomorphism. This is constructed by using the universality property of products.

10

4.2 Coproducts
In logic, the or operator is introduced by stating that if Γ is a set of true propositions
that entails 𝐴, or if Γ entails 𝐵, then Γ ⊢ 𝐴 ∨ 𝐵. This is called the introduction rule of
the coproduct:

Γ ⊢ 𝐴
Γ ⊢ 𝐴 ∨ 𝐵

Γ ⊢ 𝐵
Γ ⊢ 𝐴 ∨ 𝐵

The coproduct has one elimination rule given by:

Γ ⊢ 𝐴 ∨ 𝐵 Γ, 𝐴 ⊢ 𝐶 Γ, 𝐵 ⊢ 𝐶
Γ ⊢ 𝐶

In algebra, a set with this structure is called an upper semilattice. That is, a set 𝑋
such that for every 𝑎, 𝑏 ∈ 𝑋 , there exists an element 𝑎 ∨ 𝑏, called the join or the least
upper bound of 𝑎 and 𝑏, with the property that for every other upper bound 𝑧 (i.e., 𝑧 ≥ 𝑎

and 𝑧 ≥ 𝑏), we have 𝑧 ≥ 𝑎 ∨ 𝑏. This can be visualized as follows:

𝑧

𝑥 ∨ 𝑦

𝑥 𝑦

≥

≥ ≥

≥ ≥

We now generalize the concept of least upper bound to the categorical notion of a
coproduct 𝐴 + 𝐵.

Definition 4.2 (Coproduct). For two objects 𝐴 and 𝐵, the coproduct is an object 𝐶
equipped with two arrows 𝑖1 : 𝐴 → 𝐶 and 𝑖2 : 𝐵 → 𝐶 called injections such that for
any object 𝑍 with arrows 𝑓 : 𝐴 → 𝑍 and 𝑔 : 𝐵 → 𝑍 , there exists a unique morphism
ℎ : 𝐶 → 𝑍 making the following diagram commute:

𝐴 𝐶 𝐵

𝑍

𝑖1

𝑓
ℎ

𝑖2

𝑔

We write 𝐴 + 𝐵 for the coproduct of two objects 𝐴 and 𝐵 and [𝑓 , 𝑔] for ℎ.

This definition corresponds to the notion of a disjoint union in Set:

𝐴 + 𝐵 Δ
= {(𝑎, 1) | 𝑎 ∈ 𝐴} ∪ {(𝑏, 2) | 𝑏 ∈ 𝐵},

where the injections 𝑖1 and 𝑖2 are defined as:

𝑖1 (𝑎) = (𝑎, 1) and 𝑖2 (𝑏) = (𝑏, 2).

11

For any element 𝑓 : 𝐴→ 𝑍 and 𝑔 : 𝐵→ 𝑍 , the unique morphism [𝑓 , 𝑔] is defined
by:

[𝑓 , 𝑔] (𝑥) =
{
𝑓 (𝑎) if 𝑥 = (𝑎, 1),
𝑔(𝑏) if 𝑥 = (𝑏, 2).

The existence condition ensures that every element of 𝐴 and 𝐵 is included in the
coproduct (no omission), while the uniqueness condition ensures that there are no
additional elements in 𝐴 + 𝐵 (no duplication).

Notice that we could define the coproduct in many ways, but as long as the categorical
definition is satisfied, all these definitions are isomorphic. The reader should verify this
by proving the following proposition:

Proposition 4.2 (Coproducts are unique up to isomorphism). Let C be a category with
coproducts. Then for all objects 𝐴 and 𝐵, if 𝐶 and 𝐷 are both coproducts of 𝐴 and 𝐵,
then 𝐶 � 𝐷.

Exercise 4.2. Prove Proposition 4.2. Hint: you need to show that for two objects 𝐴

and 𝐵, if 𝐶 and 𝐶′ are both coproducts, you can construct an isomorphism using the
universal property of coproducts.

4.3 Exponentials
In logic, the introduction rule of the implication is typically written as follows:

Γ, 𝐴 ⊢ 𝐵
Γ ⊢ 𝐴 ⊂ 𝐵

where ⊂ is how traditionally implication has been written and is reminiscent of the fact
that the information 𝐴 provides is a subset of the information that 𝐵 provides. The
introduction rule means that if we can derive 𝐵 from a context Γ and a proof of 𝐴

then we can derive that given Γ we can prove 𝐴 implies 𝐵. The elimination rule of the
implication is called “modus ponens” rule is typically written as follows:

Γ ⊢ 𝐴 ⊂ 𝐵 Γ ⊢ 𝐴
Γ ⊢ 𝐵

meaning that if Γ entails 𝐴 implies 𝐵 and we also have that Γ entails 𝐴 then we can
derive 𝐵.

The algebraic structure modelling this operator is called an Heyting algebra. An
Heyting algebra consists of a set 𝑋 with finite meets (∧) and exponents (⇒) such that
the following universal property holds

𝑧 ∧ 𝑥 ≤ 𝑦 ⇐⇒ 𝑧 ≤ 𝑥 ⇒ 𝑦

for all 𝑥, 𝑦, 𝑧.
This time the categorical definition will not match exactly the abstract definition of

the Heyting algebra. However we can show we can reduce the following definition to
the one above for preorders.

12

Definition 4.3 (Exponentials). An exponential represents the internal function type
of a language. The triangular diagram in (1) defines the universality property of an
exponential. This is an object which we denote by 𝐵𝐴, for 𝐴, 𝐵 ∈ C such that there
exists an evaluation map 𝜖 : 𝐵𝐴 × 𝐴→ 𝐵 which intuitively applies the input of type 𝐴

to a function which takes 𝐴 to 𝐵 and such that for every map 𝑍 × 𝐴
𝑓
−→ 𝐵 there exists a

unique map 𝑍
Λ 𝑓
−−→ 𝐵𝐴 such that the diagram in (1) commutes.

𝐵𝐴 𝐵𝐴 × 𝐴 𝐵

𝑍 𝑍 × 𝐴

𝑓
Λ 𝑓 ×

𝜖

Λ 𝑓 (1)

Notice, here Λ can be seen as the currying operation taking maps of type 𝑍×𝐴→ 𝐵

to maps to type 𝑍 → 𝐵𝐴. Conversely, if we happen to have a map 𝑍
𝑔
−→ 𝐵𝐴 then we

can easily construct a map 𝑍 × 𝐴

Λ
𝑔
−−−→ 𝐵 by 𝜖 ◦ ⟨𝑔 ◦ 𝜋1, 𝜋2⟩. Thus it can be proven that

there is a correspondence of arrows, in other words, a correspondence of homsets

Λ : C(𝑍 × 𝐴, 𝐵) � C(𝑍, 𝐵𝐴) :
Λ

which corresponds to our definition of Heyting exponential and it is the categorical
definition of currying and uncurrying.

4.4 Semantics of the Simply Typed 𝜆-Calculus
In this section we look at a categorical semantics for the Simply-Typed 𝜆-calculus
(STLC) which was introduced by Alonzo Church in 1940. Originally, the calculus only
considered function types, but here we add the unit type, the natural numbers object,
finite product and coproducts so that we can show off the category theory we introduced
so far.

4.4.1 Syntax

We first define the syntax of STLC by defining the set of types, the set of terms and the
typing judgment relation. The set of types Types also inductively as follows

𝐴, 𝐵 ∈ Types ::= unit (unit type)
| nat (natural numbers)
| 𝐴 × 𝐵 (products)
| 𝐴 + 𝐵 (coproducts)
| 𝐴→ 𝐵 (functions)

while the set of 𝜆-terms Terms is inductively defined as follows

𝑡 ∈ Terms ::= 𝑥 (terms variables)
| 𝑛 (natural numbers)
| (𝑡1, 𝑡2) | prj1 (𝑡) | prj2 (𝑡) (products)
| case 𝑡 of {inl(𝑥) ⇒ 𝑡1; inr(𝑦) ⇒ 𝑡2} | inl(𝑡) | inr(𝑡) (coproducts)
| 𝜆𝑥.𝑡 | 𝑡1𝑡2 (functions)

13

Equational Laws

Typing Judgment The typing judgement relation ⊢ is defined inductively as follows

(𝑥 : 𝐴) ∈ Γ
Γ ⊢ 𝑥 : 𝐴 Γ ⊢ () : unit Γ ⊢ 𝑛 : nat

Γ ⊢ 𝑡 : 𝐴 × 𝐵

Γ ⊢ prj1 (𝑡) : 𝐴
Γ ⊢ 𝑡 : 𝐴 × 𝐵

Γ ⊢ prj2 (𝑡) : 𝐵
Γ ⊢ 𝑡1 : 𝐴 Γ ⊢ 𝑡2 : 𝐵
Γ ⊢ ⟨𝑡1, 𝑡2⟩ : 𝐴 × 𝐵

Γ ⊢ 𝑡 : 𝐴
Γ ⊢ inl(𝑡) : 𝐴 + 𝐵

Γ ⊢ 𝑡 : 𝐵
Γ ⊢ inr(𝑡) : 𝐴 + 𝐵

Γ ⊢ 𝑡 : 𝐴 + 𝐵 Γ, 𝐴 ⊢ 𝑡1 : 𝐶 Γ, 𝐵 ⊢ 𝑡1 : 𝐶
Γ ⊢ case 𝑡 of {inl(𝑥) ⇒ 𝑡1; inr(𝑦) ⇒ 𝑡2} : 𝐶

Γ ⊢ 𝑡1 : 𝐴→ 𝐵 Γ ⊢ 𝑡2 : 𝐴
Γ ⊢ 𝑡1𝑡2 : 𝐵

Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ 𝜆𝑥.𝑡 : 𝐴→ 𝐵

4.4.2 Semantics

The semantics of a programming language is given by the semantic function mapping
the syntax into the meaning of the language. This function is traditionally denoted by
⟦·⟧ and pronounced the semantic brackets. We use the semantic brackets for both the
types, terms and the context interpretation. First we need to interpret the contexts. Since
these are essentially finite lists we need a category with finite products. Thus define ⟦Γ⟧
by assuming that every context Γ is a finite list of typed variables 𝑥1 : 𝐴1, · · · , 𝑥𝑛 : 𝐴𝑛:

⟦𝑥1 : 𝐴1, · · · , 𝑥𝑛 : 𝐴𝑛⟧ = ⟦𝐴1⟧ × · · · × ⟦𝐴𝑛⟧

Or equivalently, by interpreting the context by induction on the list:

⟦.⟧ = 1
⟦Γ, 𝑥 : 𝐴⟧ = ⟦Γ⟧ × ⟦𝐴⟧

which is a more intuitive definition for readers familiar with functional programming.
The interpretation of types is then a function ⟦⟧ : Types→ Obj(C) from syntactic

types into object of a category enforcing the intuition that in categorical semantics we
think of types as objects:

⟦unit⟧ = 1
⟦nat⟧ = N

⟦𝐴 × 𝐵⟧ = ⟦𝐴⟧ × ⟦𝐵⟧
⟦𝐴→ 𝐵⟧ = ⟦𝐵⟧⟦𝐴⟧

And, finally, the function ⟦·⟧ : Terms → Arr(C) interprets a term as a morphism
between two objects in the category C. However, to be more precise we only interpret
well-typed terms, thus it would be more correct to say that a typing derivation Γ ⊢ 𝑡 : 𝐴

14

is interpreted as an arrow ⟦𝑡⟧ of type ⟦Γ⟧ → ⟦𝐴⟧, therefore abusing some notation the
correct type of the interpretation would be something like:

⟦Γ ⊢ 𝑡 : 𝐴⟧ : ⟦Γ⟧
⟦𝑡⟧
−−→ ⟦𝐴⟧

For example, if Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵 then the interpretation of 𝑡 has type

⟦Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵⟧ : ⟦Γ⟧ × ⟦𝐴⟧ → ⟦𝐵⟧

We now define this function by induction on the typing judgement:

⟦Γ ⊢ () : unit⟧ =!
⟦Γ ⊢ 𝑛 : nat⟧ = 𝑛

⟦Γ ⊢ 𝑥 : 𝐴⟧ = 𝜋𝑥

⟦Γ ⊢ prj1 (𝑡) : 𝐴⟧ = 𝜋1 ◦ ⟦𝑡⟧
⟦Γ ⊢ prj2 (𝑡) : 𝐵⟧ = 𝜋2 ◦ ⟦𝑡⟧

⟦Γ ⊢ (𝑡1, 𝑡2) : 𝐴 × 𝐵⟧ = ⟨⟦𝑡1⟧, ⟦𝑡2⟧⟩
⟦Γ ⊢ inl(𝑡) : 𝐴⟧ = 𝑖1 ◦ ⟦𝑡⟧
⟦Γ ⊢ inr(𝑡) : 𝐴⟧ = 𝑖2 ◦ ⟦𝑡⟧

⟦Γ ⊢ case 𝑡 of {inl(𝑥) ⇒ 𝑡1; inr(𝑦) ⇒ 𝑡2} : 𝐴⟧ = [⟦𝑡1⟧, ⟦𝑡2⟧] ◦ ⟦𝑡⟧
⟦Γ ⊢ 𝜆𝑥.𝑀 : 𝐴→ 𝐵⟧ = Λ⟦𝑀⟧

⟦Γ ⊢ 𝑀𝑁 : 𝐵⟧ = 𝜖 ◦ ⟨⟦𝑀⟧, ⟦𝑁⟧⟩

where ! : ⟦Γ⟧ → 1 is the unique map into the terminal object and 𝑛 : Γ → N is the
map disregarding the context and returning the number denoted syntactically by 𝑛. In
Set, for example, there would be a constant map 𝜆𝛾.𝑛 for each 𝑛.

4.5 Exercises
The following two technical lemmas are needed to solve some of the exercises.

Lemma 4.1 (Substitution). Suppose Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵 and Γ ⊢ 𝑢 : 𝐴 are valid typing
judgments. Then so is Γ ⊢ 𝑡 [𝑢/𝑥] : 𝐵 and the interpretation of Γ ⊢ 𝑡 [𝑢/𝑥] : 𝐵 is the
composite

⟦Γ⟧
⟨𝑖𝑑,⟦𝑢⟧⟩
−−−−−−−→ ⟦Γ⟧ × ⟦𝐴⟧

⟦𝑡⟧
−−→ ⟦𝐵⟧

Lemma 4.2 (Weakening). If Γ ⊢ 𝑠 : 𝐶 is a valid typing judgment, so is Γ, 𝑥 : 𝐴 ⊢ 𝑠 : 𝐶
and the following diagram is commutative

⟦Γ⟧ × ⟦𝐴⟧ ⟦𝐶⟧

⟦Γ⟧

⟦Γ,𝑥:𝐴⊢𝑠:𝐶⟧

𝜋1
⟦Γ⊢𝑠:𝐶⟧

15

Exercise 4.3. Let C be a cartesian closed category with an initial object 0. Show that
for any object 𝑋 in C, 𝑋 × 0 is initial. Conclude 𝑋 � 0.

Exercise 4.4. In this exercise you must construct the central part of the soundness proof
for the interpretation of the simply typed 𝜆-calculus in a cartesian closed category.

Let C be a cartesian closed category. Show that the interpretation is sound with
respect to 𝛽 and 𝜂 rules for function types, i.e., show that if

Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ 𝑢 : 𝐴
Γ ⊢ 𝑠 : 𝐴→ 𝐵

then the following equalities hold

⟦(𝜆𝑥.𝑡)𝑢⟧ = ⟦𝑡 [𝑢/𝑥]⟧
⟦𝜆𝑥.(𝑠𝑥)⟧ = ⟦𝑠⟧

Here 𝑡 [𝑢/𝑥] means capture-avoiding substitution of 𝑢 for 𝑥 in 𝑡. You do not have to
worry about what capture avoiding substitution is, rather you should use Lemma 4.1
and Lemma 4.2, which you do not have to prove. (They can be proved by induction on
𝑡 and 𝑠 respectively.)

5 Functors and Natural Transformations
Definition 5.1 (Functor). Let C and D be two categories. A functor 𝐹 : C → D is a
mapping between categories that associates objects in C to an object 𝐹𝐶 ∈ Obj(C) and
that has additionally a functorial action associating arrows 𝑓 ∈ hom(𝐴, 𝐵) to arrows
𝐹 (𝑓) ∈ hom(𝐹𝐴, 𝐹𝐵) which additionally preserves identity and composition:

𝐹 (𝑖𝑑𝐴) = 𝑖𝑑𝐹𝐴 𝐹 (𝑔 ◦ 𝑓) = 𝐹 (𝑔) ◦ 𝐹 (𝑓)

Every functor preserves isomorphisms:

𝐴 � 𝐵⇒ 𝐹𝐴 � 𝐹𝐵

A functor whose functorial action is surjective is called full. whilst when the functorial
action is injective the functor is called faithful.

Proposition 5.1. A fully faithful functor 𝐹 preserves and reflects isomorphisms:

𝐴 � 𝐵 ⇐⇒ 𝐹𝐴 � 𝐹𝐵

Exercise 5.1. Prove Proposition 5.1

16

Definition 5.2 (Natural Transformation). For two functors 𝐹, 𝐺 : C → D, a natural
transformation is a family of arrows 𝜙𝐴 : 𝐹𝐴 → 𝐺𝐴 such that for every arrow
𝑓 : 𝐴→ 𝐵 the following diagram commutes:

𝐹𝐴 𝐺𝐴

𝐹𝐵 𝐺𝐵

𝜙𝐴

𝜙𝐵

𝐹 (𝑓) 𝐺 (𝑓)

5.1 Categories of Functors

5.2 Categories of Categories
Example 5.1 (Is Set � Setop?). Whenever we have an isomorphism 𝑓 : 𝑋 → 𝑌 , every
property that holds for 𝑋 should hold for 𝑌 and viceversa.

Now assume we have an isomorphism (of categories) 𝐹 : Set→ Setop and consider
a map 𝑓 : 𝐴 → ∅ in Set. (You should read about initial and terminal objects to
understand what ∅ is).

Since ∅ is initial in Set then 𝐹∅ should be terminal in Setop. Now 𝐹 𝑓 : 𝐹𝐴→ 𝐹∅
is a map in Setop and because 𝐹∅ is terminal we have many more arrows 𝐹𝐴 → 𝐹∅
than 𝐴→ ∅. Exercise: Work this out!.

Example 5.2 (Is Rel � Relop?). First off, Rel has as objects sets 𝑋,𝑌, 𝑍 and an arrow
𝑓 : 𝑋 → 𝑌 is a relation 𝑓 ⊆ 𝑋 × 𝑌 . Define now two functors 𝐹 : Rel → Relop and
𝐺 : Relop → Rel such that they are one the inverse of the other. We define 𝐹𝑋 = 𝑋

and 𝐹 (𝑅 : 𝑋 → 𝑌) (𝑦 ∈ 𝑌) = {𝑥 | 𝑥 𝑅 𝑦} and 𝐺𝑋 = 𝑋 and 𝐺 (𝑅 : 𝑌 → 𝑋) (𝑦 ∈ 𝑌) =
{𝑥 | 𝑦 𝑅 𝑥}

Verify that this is an isomorphism. (You first need to define the composition of two
morphisms (relations) in Rel)

5.3 The Homset Functor
Given a (locally small) category C1 the homset homC (𝐴, 𝐵), for any two objects 𝐴, 𝐵,
induces two functors.

The first is the covariant functor homC (𝐴,−) : C → Set which sends an object 𝐵
to the set of arrows between 𝐴 and 𝐵 and an arrow 𝐵 → 𝐵′ to the functorial action
homC (𝐴, 𝑓) : homC (𝐴, 𝐵) → homC (𝐴, 𝐵′) which sends an arrow 𝑔 : 𝐴 → 𝐵 to the
post-composition 𝑓 ◦ 𝑔 : 𝐴→ 𝐵′.

The second is the contravariant functor homC (−, 𝐵) : Cop → Set which sends an
object 𝐴 to the set of arrows between 𝐴 and 𝐵. This functor is contravariant because
it takes an arrow 𝐴 → 𝐴′ to the functorial action homC (𝑓 , 𝐵) : homC (𝐴′, 𝐵) →
homC (𝐴, 𝐵) which sends an arrow 𝑔 : 𝐴′ → 𝐵 to the pre-composition 𝑔 ◦ 𝑓 : 𝐴→ 𝐵.

1A category is small if the collection of the objects forms a set and it is ”locally small” if for any two
objects 𝐴, 𝐵 the collection of arrows between them is a set, however, we do not delve into size issues in these
notes.

17

5.3.1 Natural Isomorphisms

A natural isomorphism is an isomorphism of functors. We the tools provided by category
theory this should not be a hard notion to derive since we can form the category of
functors CD and natural transformations betwen them. At this point an isomorphism
in this category is precisely an isomorphism of functors.

More precisely, for two functors 𝐹, 𝐺 : C → D we say these two functors are
isomorphism if there exist a natural transformation 𝜙 : 𝐹 ·−→ 𝐺 which has an inverse
𝜙−1 : 𝐺 ·−→ 𝐹 which is also a natural transformation.

Example 5.3. For example, the stream functor Str · : Set→ Set defined by the greatest
solution to the following equation

Str 𝐴 � 𝐴 × Str 𝐴 (2)

is isomorphic to the functor homSet (N,−), i.e. the following isomorphism is natural in
𝐴

Str 𝐴 � homSet (N, 𝐴) (3)

Exercise 5.2. Prove this fact by defining a natural transformation 𝜙𝐴 : Str 𝐴 →
homSet (N, 𝐴) and its inverse.

In general, any covariant functor𝐹 that is isomorphic to the hom functor homC (𝐴,−)
for some 𝐴 ∈ Obj(()C) is called representable.

Exercise 5.3. Show that the type of lists as defined below

List𝐴 � 1 + 𝐴 × List𝐴 (4)

is not representable.

Exercise 5.4. Let C be a locally small category, and let 𝐴, 𝐵, 𝑃 be object of C. Show
that 𝑃 is a product of 𝐴, 𝐵, i.e. there is a product diagram

𝐴 𝑃 𝐵

if and only if there is an isomorphism

C(𝑋, 𝑃) � C(𝑋, 𝐴) × C(𝑋, 𝐵)

that is natural in 𝑋 , in other words, iff the functors

C(−, 𝑃) : Cop → Set
C(−, 𝐴) × C(−, 𝐵) : Cop → Set

are (naturally) isomorphic.

18

6 Limits and Colimits
We are going to proceed up the ladder of abstraction and generalise the notion of
arbitrary products and coproducts.

Given a set 𝐼 and a family of sets indexed by 𝐼, {𝐴𝑖} we can form the dependent
product of these sets Π𝑖∈𝐼𝐴𝑖 which informally is the product of all sets 𝐴𝑖

𝐴1 × 𝐴2 × 𝐴3 × · · · × 𝐴𝑛 × . . .

Dually we can form the dependent sum is denoted by
∑

𝑖∈𝐼 𝐴𝑖 and can be written
informally as follows:

𝐴1 + 𝐴2 + 𝐴3 + · · · + 𝐴𝑛 + . . .
Limits and Colimits are just generalisation of these concepts.

Definition 6.1 (Cone). For a diagram 𝐷 : I → D, a cone is an object 𝐶 such that
ther exists a family of maps 𝜋𝑖 : 𝐶 → 𝐷𝑖 and such that

𝐷 (𝑓) ◦ 𝜋𝑖 = 𝜋 𝑗 (5)

for every 𝑓 : 𝑖 → 𝑗 .

Definition 6.2 (Limit). For a diagram 𝐷 : I → C, a limit is a universal cone 𝑃,
that is a cone that for any other cone for 𝐷, say 𝐶, there exists a unique arrow
ℎ : 𝐶 → lim𝑖∈I 𝐷𝑖 such that

𝜋𝑖 ◦ ℎ = 𝑓𝑖 (6)

for every 𝑖 ∈ I. The picture below summarises the situation:

𝐷 𝑗 𝐷 𝑗′

lim←−−𝐷𝑖

𝐶

𝜋 𝑗 𝜋 𝑗′

𝐷 (𝑓)

𝑓 𝑗
ℎ

𝑓 𝑗′

We denote the limit of a diagram 𝐷 by lim←−−𝑖∈I 𝐷𝑖

Exercise 6.1. The notion of colimit is obtained by reversing the arrows. Derive it by
exercise.

Dependent Products and Sums The dependent product and dependent sum are just
limits and colimits respectively where the category I is discrete1. In this particular
case the coherence conditions (5) on the projections are vacuous because there are no
meaningful arrows in the index category. This means, for example in the case of the
product, that every tuple is in the limit as opposed to just those that satisfy the coherence
condition.

1The category of objects and identity arrows

19

Powers and Copowers Assume that our diagram 𝐷 : I → C is constant additionally
to the category I being discrete and assume 𝐷 (𝑖) = 𝐴 for some 𝐴 ∈ C. Then we
have another special case where the dependent product becomes a product of the same
object Π𝑖∈I𝐴 which is called the power and denoted by 𝐴I . Note that this is in general
different from the exponential because I is a category, not an object. However, in Set
the power is isomorphic to the function space I → 𝐴 since I can be viewed as a set
because it is discrete1.

Similarly, the copower is a special case of dependent sum when 𝐷 is constant and
is denoted by I • 𝐴. Moreover in Set, this is just the pair I × 𝐴 with I again viewed
as a set.

6.1 Algebraic Data Types as Limits and Colimits
Streams as Limits Assume C is a category with all limits. The streams over 𝐴

from definition (2) are obtained as the limit for a diagram. We first define the functor
𝐹 : Set → Set by 𝐹𝑋 = 𝐴 × 𝑋 giving the non-recursive shape of the streams. Then
we define the 𝜔op-chain of approximations represented by the diagram 𝐷 : 𝜔op → C
defined on object by 𝐷 (1) = 1 and 𝐷 (𝑛 + 1) = 𝐹𝑛1 and on arrows by 𝐷 (1 ≤ 2) =!
(the unique map to the terminal object) and 𝐷 (𝑛 ≤ 𝑛 + 1) = 𝐹𝑛!. The limit of this
𝜔op-chain is the type of coinductive streams as depicted below:

lim←−− 𝐹
𝑛1

1 𝐹1 𝐹21 · · · 𝐹𝑛1 · · ·
! 𝐹! 𝐹𝑛−1!𝐹2! 𝐹𝑛1

𝜋1 𝜋2 𝜋3 𝜋𝑛+1

Lists as Colimits Assume C is a category with all colimits. The lists over 𝐴 from
definition (4) are obtained as the colimit for a diagram. We first define the functor
𝐹 : Set→ Set by 𝐹𝑋 = 1 + 𝐴 × 𝑋 giving the non-recursive shape of the lists. Then we
define the 𝜔-chain of approximations represented by the diagram 𝐷 : 𝜔 → C defined
on object by 𝐷 (1) = 0 and 𝐷 (𝑛 + 1) = 𝐹𝑛0 and on arrows by 𝐷 (1 ≤ 2) =! (the unique
map from the initial object) and 𝐷 (𝑛 ≤ 𝑛 + 1) = 𝐹𝑛!. The colimit of this 𝜔-chain is the
type of coinductive streams as depicted below:

lim−−→ 𝐹𝑛0

0 𝐹1 𝐹21 · · · 𝐹𝑛1 · · ·
! 𝐹! 𝐹𝑛−1!𝐹2! 𝐹𝑛1

inj1 inj2 inj3 inj𝑛+1

1Notice that I needs to be small for the collection of objects to be a set, but again, size issues are not
really an issue for the focus of these notes

20

7 Adjunctions
Almost every universality property comes from an adjunction1 and certainly all the
constructions seen so far are in fact an instance of an adjunction.

7.0.1 Adjunctions

Given two functors 𝐿 : D → C and 𝑅 : C → D and adjunction is an isomorphism of
homsets

⌊·⌋ : C(𝐿𝐴, 𝐵) � D(𝐴, 𝑅𝐵) : ⌈·⌉
which is furthermore natural in 𝐴 and 𝐵. Here ⌊·⌋ and ⌈·⌉ are the maps witnessing the
isomorphism. The adjunction is usually depicted as follows

C D
𝐿

𝑅
⊣

We say that that 𝐿 is left adjoint to 𝑅, and viceversa, 𝑅 right adjoint to 𝐿. However, you
draw the adjunction the turnstile points towards the left-adjoint as indicated by 𝐿 ⊢ 𝑅.

As a consequence of the isomorphism we have that for all 𝑓 : 𝐿𝐴 → 𝐵 and
𝑔 : 𝐴→ 𝑅𝐵 there is a correspondence of arrows:

⌊ 𝑓 ⌋ = 𝑔 ⇐⇒ 𝑓 = ⌈𝑔⌉

moreover, the natural isomorphism gives rise to the fusion laws. For 𝑎 : 𝐴′ → 𝐴,
𝑏 : 𝐵→ 𝐵′, 𝑓 : 𝐿𝐴→ 𝐵 and 𝑔 : 𝐴→ 𝑅𝐵

𝑅(𝑏) · ⌊ 𝑓 ⌋ = ⌊𝑏 · 𝑓 ⌋ (7)
⌊ 𝑓 ⌋ · 𝑎 = ⌊ 𝑓 · 𝐿 (𝑎)⌋ (8)
𝑏 · ⌈𝑔⌉ = ⌈𝑅(𝑏) · 𝑔⌉ (9)
⌈𝑔⌉ · 𝐿 (𝑎) = ⌈𝑔 · 𝑎⌉ (10)

This is really all about adjunctions. All the other definitions and constructions are
equivalent to this one. Furthermore, this material is very well covered elsewhere (e.g.
in Awodey’s book [1]) so we will not be covering it further.

7.1 Instances of Adjunctions
7.1.1 Initial and Terminal Objects

Assume that we have a category 1 with only one object ∗ and one arrow, the identity
arrow 𝑖𝑑∗. Then the universality property of the initial and terminal object can be then
rephrased in terms of adjunctions

C 1 C
0

Δ

Δ

1

⊣ ⊣

1More in general a universal map is the initial object in the comma category 𝑋 ↓ 𝐹, but that is not our
concern here.

21

where 0 is the constant functor returning the initial object and 1 is the functor returning
the terminal object while Δ is the constant functor returning the element ∗.

We can prove that if the above are indeed adjunctions then the functors 0 and 1
must given the initial and terminal object respectively. The isomorphism given by the
adjunction with 0 as left adjoint is as follows:

⌊·⌋ : homC (0, 𝑌) � hom1 (∗, ∗) : ⌈·⌉

while for the terminal object the adjunction is given by the following natural isomor-
phism:

⌊·⌋ : hom1 (∗, ∗) � homC (𝑋, 1) : ⌈·⌉

Exercise 7.1. Compute the two naturality conditions and derive the fusion laws.

We now proceed with the universal property of products and coproducts.

7.1.2 (Co)products and Products

Similary the coproduct arises as the left adjoint of the diagonal functor Δ : C → C × C
which is defined as Δ𝑋 = (𝑋, 𝑋) while the product arises as the right adjoint of the
functor Δ:

C C × C C
+

Δ

Δ

×

⊣ ⊣

Exercise 7.2. Derive the fusion laws and conclude these are exactly those of the product
and coproduct respectively.

7.1.3 Exponentials

The exponential is given by the right adjoint of the functor (− × 𝐴). That is the functor
(−)𝐴:

C C
(−)𝐴

(−)×𝐴

⊣

The isomorphism induced by this adjunction is stated as follows:

⌊·⌋ : homC (𝑋 × 𝐴,𝑌) � homC (𝑋,𝑌 𝐴) : ⌈·⌉

Notice that here ⌊·⌋ and ⌈·⌉ are respectively the curry and uncurry operations in func-
tional programming.

7.1.4 (Co)Limits

Limits and colimits stem from adjunctions too.
The limit, in particular, extends to a functor from the category of diagrams CI to

the category C simply taking a diagram and returning its limit. This functor is right
adjoint to the diagonal functor Δ : C → CI defined as Δ𝑋𝐼 = 𝑋 mapping an object to

22

the constant diagram which returns that object. Dually, colimits are left-adjoints to the
diagonal functor. The situation is depicted below:

C CI C
lim−→

Δ

Δ

lim←−

⊣ ⊣

At this point the reader should notice that the similarity between initial and terminal,
coproducts and products and colimits and limits. Indeed initial objects and coproducts
are special cases of colimits while terminal objects and products are special cases of
limits.

7.2 Semantics of Predicative Polymorphism
Polymorphism is a core feature of most programming languages allowing developers
to craft generic programs which are agnostic to the specifics of the types.

In programming languages like C, we can define algorithms that work for lists that
contain different types, but we have to define the algorithm for each and everyone
of the specific type we want to handle. This type of polymorphism is called ad-hoc
polymorphism. Predicative polymorphism allows the programmer to write one function
that is parametric on the type or, in words, it takes a generic type with the promise that
the data of that type will not be inspected. Therefore, this kind of algorithm can be said
to be agnostic as to the type of data structure given. This allows for code reusability
since a polymorphic program can be written only once and can work at all types.

This flexibility provides a layer of confidence regarding the properties of the code.
Philip Wadler’s paper [11] offers a comprehensive exploration of these properties.

As an example, in a total language there is no program of type ∀𝛼.𝛼 since such a
program would need to yield a value of an arbitrary type 𝛼. Consequently, ∀𝛼.𝛼 can be
viewed as the empty type 0, which, in a total language1, acts as the initial object.

Similarly, ∀𝛼.𝛼→ 𝛼 has only one inhabitant, namely the identity functionΛ𝛼.𝜆𝑥.𝑥,
with Λ abstracting a type variable and 𝜆 abstracting a term variable.

Now the reverse function, reversing a list, is indeed a polymorphic function since
it needs not inspecting the content of the single element in a list:

∀𝛼.List 𝛼→ List 𝛼 (11)

This type grants universality by reversing elements without inspecting their specifics.
Conversely, any sorting algorithm on lists needs to know that the inner type inside the
list as some kind of ordering associated with it, rendering (11) unsuitable for quicksort
or mergesort, for instance.

Once we defined a polymorphic function, we have the liberty to instantiate it with
any desired type, even itself. This style of polymorphism is called impredicative and
was first introduced by Girard in 1972 [2] in the context of proof theory and then
proposed by Reynolds in 1983 [9] as a programming language known was System F or
second-order 𝜆-calculus.

1There are of course issues with non-termination but we will not address them here

23

For instance, the reverse function might operate on elements of type N or 𝜂, but
also on the type (11) itself.

While impredicative polymorphism is convenient in programming languages, it
poses a significant foundational problem when seeking for a semantic model as we did
in Section 4.4. As we have seen the task of seeking a denotational model is to find
a universe of sets U and interpreting types with 𝑛 free variables as maps U𝑛 → U.
Assuming no free variables, we would like to interpret ∀𝛼.𝛼 as a set. Naively we could
try to interpret it as the product of sets indexed over sets. Now, the denotation of ∀𝛼.𝛼
would be a set for the interpretation to work and, as a result, we would have that the
product of all sets would be the set containing all sets which is a paradoxical statement
known as the Russell’s paradox, suggesting that such a set cannot exist. This fact was
discovered by Reynolds in 1984 [10].

Models of impredicative polymorphism have eventually been found by Pitts [8] who
showed this in constructive set theory.

In these notes, we are going to avoid this problem and restrict ourselves to predicative
polymorphism which is a variant of impredicative polymorphism where polymorphic
types (polytypes or type schemes) can only be instantiated with non-polymorphic types
(monotypes).

7.2.1 Syntax

The language we are going to define is called ML0 . We first define the syntax by
defining the set of monotypes, the set of polytypes, the set of terms and the typing
judgment relation. The set of types monotypes and polytypes is defined inductively as
follows:

𝐴, 𝐵 ∈ Types0 ::= 𝛼 (type variables)
| unit (unit type)
| nat (natural numbers)
| 𝐴 × 𝐵 (products)
| 𝐴→ 𝐵 (functions)

𝜏 ∈ Types1 ::= 𝐴 | ∀𝛼.𝜏 (predicative polymorphism)

Notice that polytypes are of the form ∀𝛼.∀𝛽.𝐴 where 𝐴 is a monotype. Thus types of
the form ∀𝛼.(∀𝛽.𝛽) → 𝛼 for example are not allowed.

The set of 𝜆-terms Terms is inductively defined as follows:

𝑡 ∈ Terms ::= 𝑥 (terms variables)
| () (unit)
| 𝑛 (natural numbers)
| (𝑡1, 𝑡2) | prj1 (𝑡) | prj2 (𝑡) (products)
| 𝜆𝑥.𝑡 | 𝑡1𝑡2 (functions)
| let 𝑥 = 𝑡1 in 𝑡2 | Λ𝛼.𝑡 | 𝑡@𝐴 (polymorphism)

where Λ is a binder which abstracts over type variables, the let binds a program 𝑀 of
a polytype inside a program 𝑁 which returns a monotype. This allows the programmer
to write programs such as

let 𝑥 = 𝑖𝑑 in 𝑥@unit : unit→ unit

24

where 𝑖𝑑 : ∀𝛼.𝛼 → 𝛼 and the constructor 𝑀@𝐴 is the application for terms that have
a polytype as a type.

Note that since we have defined types using to separate layers for grammars we can
constrain the types that we are going to apply to polymorphic programs. In fact, in the
constructor 𝑀@𝐴 only monotypes are allowed.

We first define a judgment for the contexts and the types. Technically, there are two
judgments for types, one for the monotypes and one for the polytypes, but we adopt the
same notation for both of them as it should be clear from the context which judgment
we mean. First a type context is a list of variables. Theunit type can be typed in any
well-formed context and and a type variable can by typed in any well-formed context
that contains it. Finally the polymorphic types ∀𝛼.𝜏 are well-typed if the body 𝜏 is
open in 𝛼 and well-typed: The context for term variables is instead a list of pairs 𝑥 : 𝜏
implying that variables are of poly-typed and therefore can also be mono-typed.

Γ = (𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛)

We now define the typing judgment for terms. Again, there are technically two typing
judgments, the first for mono-typed programs and the second for poly-typed programs.
Once again, it should be clear from the context which judgment we are using:

(𝑥 : 𝜏) ∈ Γ
Γ ⊢ 𝑥 : 𝜏 Γ ⊢ () : unit Γ ⊢ 𝑛 : nat

Γ ⊢ 𝑡 : 𝐴 × 𝐵

Γ ⊢ prj1 (𝑡) : 𝐴
Γ ⊢ 𝑡 : 𝐴 × 𝐵

Γ ⊢ prj2 (𝑡) : 𝐵
Γ ⊢ 𝑡1 : 𝐴 Θ | Γ ⊢ 𝑡2 : 𝐵

Γ ⊢ ⟨𝑡1, 𝑡2⟩ : 𝐴 × 𝐵

Γ ⊢ 𝑡1 : 𝐴→ 𝐵 Γ ⊢ 𝑡2 : 𝐴
Γ ⊢ 𝑡1𝑡2 : 𝐵

Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ 𝜆𝑥.𝑡 : 𝐴→ 𝐵

Γ ⊢ 𝑡1 : 𝜏 Γ, 𝑥 : 𝜏 ⊢ 𝑡2 : 𝐴
Γ ⊢ let 𝑥 = 𝑡1 in 𝑡2 : 𝐴

Γ ⊢ 𝑡 : 𝜏
Γ ⊢ Λ𝛼.𝑡 : Π𝛼.𝜏

if 𝛼 ∉ Ftv(Γ) Γ ⊢ 𝑡 : Π𝛼.𝜏

Γ ⊢ 𝑡@𝐴 : 𝜏[𝐴/𝛼]
The first typing rule is for variables. Notice once again that variables can be typed
with a poly-type and therefore the context should accommodate that. Additionally the
polytype itself has to be well-typed in the context Θ.

We now justify some choices behind the type system.
First notice the variable rule which says that variables’ types can be open. The

first example that justifies this is the polymorphic identity function which is typed as
follows:

𝑥 : 𝛼 ⊢ 𝑥 : 𝛼
⊢ 𝜆𝑥.𝑥 : 𝛼→ 𝛼

⊢ 𝜆𝑥.𝑥 : Π𝛼.𝛼→ 𝛼

Γ ⊢ 𝑖𝑑 : Π𝛼.𝛼→ 𝛼

Γ ⊢ 𝑖𝑑 : (𝛼→ 𝛼) → 𝛼→ 𝛼

Γ ⊢ 𝑖𝑑 : Π𝛼.𝛼→ 𝛼

Γ ⊢ 𝑖𝑑 : 𝛼→ 𝛼

Γ ⊢ 𝑖𝑑 𝑖𝑑 : 𝛼→ 𝛼

⊢ let 𝑖𝑑 = 𝜆𝑥.𝑥 in 𝑖𝑑 𝑖𝑑 : 𝛼→ 𝛼

7.2.2 Semantics

First of all we have to define the semantics of types. Since types can be open with type
variables a type needs to be a mapping from a type environment to the set of types. A

25

type environment is itself a map from the type variables to their set. However, as there
is no set of sets we have to define a set containing only those sets are small. We call this
set the universe of small sets and we denoted byU. This set contains the singleton set
and the set of natural numbers and it is closed under exponentials. To do this we define
U0 = {1,N} and U𝑛+1 = {𝑋𝑌 | 𝑋,𝑌 ∈ U𝑛} ∪ U𝑛 then the universe of monotypes is
defined asU =

⋃
𝑛∈𝜔U𝑛. We denote byU𝑛 the 𝑛-fold product

U𝑛 Δ
= U × · · · × U︸ ︷︷ ︸

𝑛 times

Now the interpretation of a monotype 𝐴 with free type variables Ftv(𝐴) is a mapping
⟦𝐴⟧ : U |Ftv(𝐴) | → U where |Ftv(𝐴) | is the number of free type variables in the
monotype 𝐴. Thus given a semantic type environment 𝜄 ∈ U |Ftv(𝐴) | taking type
variables to semantic monotypes we can define the semantics of types by induction on
the as follows:

⟦𝛼⟧ 𝜄 = 𝜄(𝛼)
⟦unit⟧ 𝜄 = 1
⟦nat⟧ 𝜄 = N

⟦𝐴 × 𝐵⟧ 𝜄 = ⟦𝐴⟧ 𝜄 × ⟦𝐵⟧ 𝜄
⟦𝐴→ 𝐵⟧ 𝜄 = ⟦𝐵⟧ 𝜄⟦𝐴⟧𝜄

The semantics of polytypes are interpreted in a bigger universe such thatU is contained
in it. The category of sets would do as opposed to the Von Neumann universe used
in Gunter’s book [3]. We denote the inclusion functor by 𝐽 : U ↩→ Set. Now for a
polytype 𝜏 as a map ⟦𝜏⟧ : U |Ftv(𝜏) | → Set. Specifically, we interpret the universal
quantifier as the limit over the monotypes inU. This is a Π-type since the universeU
is a set with no arrows and therefore can be regarded as a discrete category as we have
shown in Section 6.

⟦Π𝛼.𝜏⟧ 𝜄 = Π𝑋∈U⟦𝜏⟧ 𝜄[𝛼 ↦→𝑋]

Recall that the Π-type is right adjoint to the diagonal functor, in this instance the base
category is SetU𝑛 with 𝑛 + 1 being the free type variables in 𝜏.

SetU𝑛U SetU𝑛

Π

Δ

⊣

Notice that ⟦𝜏⟧ lives in the category SetU𝑛U which is the same as the category SetU𝑛+1

of semantic types on 𝑛 + 1 variables.
The isomorphism induced by the adjunction is therefore as follows:

⌊·⌋ : SetU
𝑛+1 (ΔΓ, 𝜏) � SetU

𝑛 (Γ,Π𝜏) : ⌈·⌉ (12)

Notice that the homset in the category SetU𝑛 is the set of natural transformations
between functors of typeU𝑛 → Set.

26

We now have to define the semantics of a context for term variables Γ ≡ 𝑥1 :
𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛. Assume 𝑚 is the number of free type variables in Γ. Then ⟦Γ⟧ is a
object in SetU𝑚 :

⟦Γ⟧ = ⟦𝑇1⟧ × · · · × ⟦𝑇𝑛⟧

where the product is the defined point-wise as (𝑋×𝑌) (𝜄) = 𝑋 𝜄×𝑌𝜄 for a type environment
𝜄 ∈ U𝑚.

The interpretation of well-typed terms Γ ⊢ 𝑡 : 𝜏 is an arrow ⟦Γ ⊢ 𝑡 : 𝜏⟧ : ⟦Γ⟧
⟦𝑡⟧
−−→

⟦𝜏⟧ in SetU𝑛 whereas a well-typed term Γ ⊢ 𝑡 : 𝐴 is an arrow ⟦Γ ⊢ 𝑡 : 𝐴⟧ : ⟦Γ⟧
⟦𝑡⟧
−−→

⟦𝐴⟧. The interpretation is then given by induction on the typing judgment:

⟦Γ ⊢ () : unit⟧ = !
⟦Γ ⊢ 𝑛 : nat⟧ = 𝑛

⟦Γ ⊢ 𝑥 : 𝐴⟧ = 𝜋𝑥

⟦Γ ⊢ prj1 (𝑡) : 𝐴⟧ = 𝜋1 ◦ ⟦𝑡⟧
⟦Γ ⊢ prj2 (𝑡) : 𝐵⟧ = 𝜋2 ◦ ⟦𝑡⟧

⟦Γ ⊢ (𝑡1, 𝑡2) : 𝐴 × 𝐵⟧ = ⟨⟦𝑡1⟧, ⟦𝑡2⟧⟩
⟦Γ ⊢ 𝜆𝑥.𝑡 : 𝐴→ 𝐵⟧ = Λ⟦𝑡⟧

⟦Γ ⊢ 𝑡1𝑡2 : 𝐵⟧ = 𝜖 ◦ ⟨⟦𝑀⟧, ⟦𝑁⟧⟩
⟦Γ ⊢ let 𝑥 = 𝑡1 in 𝑡2 : 𝐴⟧ = ⟦𝑡2⟧ ◦ ⟨𝑖𝑑Γ, ⟦𝑡1⟧⟩

⟦Γ ⊢ Λ𝛼.𝑡 : ∀𝛼.𝜏⟧ = ⌊⟦𝑡⟧⌋
⟦Γ ⊢ 𝑡@𝐴 : 𝜏[𝐴/𝛼]⟧ = 𝜋𝐴 ◦ ⟦𝑡⟧

Most of the terms are interpreted as in Section 4.4. Assuming a map ⟦𝑡⟧ : Δ⟦Γ⟧ → ⟦𝜏⟧
in SetU𝑛+1

𝛼 ∉ Ftv(Γ) the interpretation of the introduction rule of the ∀ quantifier is
given by the adjunction (12) defined above which is an arrow of type

⟦Γ⟧ 𝜄 → Π𝑋∈U⟦𝜏⟧ 𝜄[𝛼 ↦→𝑋]

for 𝜄 ∈ U𝑛.

8 Monads
In this section we are going to take a closer look at computational effects and how they
can be interpreted into a category. To do this need the notion of monad. Here we
assume the reader has at least heard of what a monad is from functional programming.
Monads in category theory are the same concept, but originally they have been given a
different definition.

Definition 8.1 (Monad). For a category C, a monad is an endofunctor 𝑇 : C → C
such that there exists two natural transformations 𝜂 : 𝐼𝑑 ·−→ 𝑇 and 𝜇 : 𝑇𝑇 ·−→ 𝑇 such

27

that the following diagrams hold:

𝑇 𝑇2 𝑇 𝑇3 𝑇2

𝑇 𝑇2 𝑇

𝑇𝜂𝜂𝑇

𝑖𝑑𝑇 𝑖𝑑𝑇

𝜇𝑇 𝑇𝜇

𝜇

𝜇𝑇

𝜇

Example 8.1 (List Monad). The list type𝑇𝑋 = 1+𝐴×𝑇𝑋 is a monad with 𝜂𝑋 : 𝑋 → 𝑇𝑋

being the map constructing a singleton list and the multiplication 𝜇𝑋 : 𝑇𝑇𝑋 → 𝑋 given
by concatenation applied to lists of lists.
Example 8.2 (State Monad). Assume a set of state 𝑆 and let 𝑇 : Set→ Set be the state
monad 𝑇𝑋 = 𝑆 → 𝑋 × 𝑆, that is the monad of computations that take a state 𝜎 ∈ 𝑆 and
returns an output in 𝐴 along with the modified state. The unit of the monad is given be
𝑎 ↦→ 𝜆𝜎.⟨𝑎, 𝜎⟩ and the multiplication is given by

𝑐 ↦→ 𝜆𝜎.𝑐′ (𝜎′) where (𝑐′, 𝜎′) = 𝑐(𝜎)
For the reader more familiar with functional programming, the multiplication gives

raise to the bind operation ¿¿=𝐴 : 𝑇𝐴→ (𝐴→ 𝑇𝐵) → 𝑇𝐵 defined by 𝜇𝐴 ◦ 𝑇 (𝑓).

8.0.1 Adjunctions determine Monads

Given a pair of adjoint functors 𝐿 ⊢ 𝑅 we can construct both a monad, given by 𝑅𝐿

and a comonad, given by 𝐿𝑅. The unit of the monad and the counit of the comonad are
defined as follows

𝜂𝐴 = ⌊𝑖𝑑𝐿𝐴⌋
𝜖𝐵 = ⌈𝑖𝑑𝑅𝐵⌉

The join or multiplication of the monad 𝜇 : 𝑅𝐿𝑅𝐿 → 𝑅𝐿 is defined as 𝜇 = 𝑅𝜖𝐿 and
the cojoin or comultiplication 𝛿 : 𝐿𝑅 → 𝐿𝑅𝐿𝑅 is defined as 𝛿 = 𝐿𝜂𝑅. The operations
of the comonad are dually defined.

8.1 The Kleisli Category
The Kleisli category is the category of arrows that produce an effect 𝑇 .
Definition 8.2 (Klesli Category). For a category C and a monad (𝑇, 𝜂, 𝜇) the Kleisli
category, denoted by C𝑇 , is the category where objects are the objects in C and arrows
𝑓 : 𝐴→ 𝐵 are arrows 𝑓𝑇 : 𝐴→ 𝑇𝐵 in C.

We would like to stress that when we speak about arrows 𝑓 : 𝐴→ 𝐵 in the Kleisli
category C𝑇 we mean arrows 𝑓𝑇 : 𝐴→ 𝑇𝐵 in C. We have to prove that C𝑇 is a category.
This is easy to check as for every object 𝐴 we have and identity arrow 𝑖𝑑𝐴 : 𝐴 → 𝐴

given by the unit of the monad 𝜂𝐴 : 𝐴→ 𝑇𝐴 and for arrows 𝑓 : 𝐴→ 𝐵 and 𝑔 : 𝐵→ 𝐶

in C𝑇 we can construct the composite 𝑔 ◦ 𝑓 : 𝐴→ 𝐶 using the functorial action of the
monad 𝑇 (𝑔) and the multiplication of the monad 𝜇𝐶 :

𝐴 𝑇𝐵 𝑇2𝐶 𝑇𝐶
𝑓 𝑇 (𝑔) 𝜇𝐶

(𝑔◦ 𝑓)𝑇

28

8.2 The Computational 𝜆-calculus
The computational 𝜆-calculus which we denote by 𝜆𝐶 is a calculus with effects first
devised by Eugenio Moggi [7] who was the first to discover the connection between
computational effects and monads.

In this section we define the computational𝜆-calculus and we give it an interpretation
in the Kleisli category C𝑇 for a (strong) monad 𝑇 .

8.2.1 Syntax

We first define the syntax of 𝜆𝐶 by defining the set of types, the terms and the typing
system as usual. To demonstrate the utility of monads we are only going to need basic
types and function spaces:

𝐴, 𝐵 ∈ Types ::= unit (unit type)
| 𝐴→ 𝐵 (functions)

while the set of 𝜆-terms Terms is inductively defined as follows

𝑡 ∈ Terms ::= 𝑥 (terms variables)
| bang (effects)
| 𝜆𝑥.𝑡 | 𝑡1𝑡2 (functions)

where bang is a program producing an effect. The typing judgement relation ⊢ induc-
tively as follows

(𝑥 : 𝐴) ∈ Γ
Γ ⊢ 𝑥 : 𝐴 Γ ⊢ bang : unit

Γ ⊢ 𝑡1 : 𝐴→ 𝐵 Γ ⊢ 𝑡2 : 𝐴
Γ ⊢ 𝑡1𝑡2 : 𝐵

Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ 𝜆𝑥.𝑡 : 𝐴→ 𝐵

Note that the program bang returns nothing so we type it with the type unit.

8.2.2 Semantics

We interpret the context Γ as usual:

⟦𝑥1 : 𝐴1, · · · , 𝑥𝑛 : 𝐴𝑛⟧ = ⟦𝐴1⟧ × · · · × ⟦𝐴𝑛⟧

The interpretation of types is then a function ⟦⟧ : Types → Obj(C𝑇). Notice that
Obj(C𝑇) is exactly Obj(C).

⟦unit⟧ = 1

⟦𝐴→ 𝐵⟧ = 𝑇⟦𝐵⟧⟦𝐴⟧

The placement of which types can produce an effect is crucial. When dealing with effects
it is customary to prefer a call-by-value semantics to avoid that effectul computation

29

passed onto functions as inputs could be executed more than once to the nature of
call-by-name.

Because in call-by-value effects are computed before the 𝛽-reduction rule applies
there is no need for input values to be computations, they are actually normalised values.
However, once an input value is applied to a function, this can produce an effect.

We now interpret the terms of the language by induction on the typing judgment.
For a well-typed term Γ ⊢ 𝑡 : 𝐴 we give an arrow ⟦𝑡⟧ of type ⟦Γ⟧ → ⟦𝐴⟧ in C𝑇 as usual,
but here the reader should keep in mind that this is really a map of type ⟦Γ⟧ → 𝑇⟦𝐴⟧
in C

⟦Γ ⊢ () : unit⟧ =!
⟦Γ ⊢ bang : unit⟧ = 𝑏

⟦Γ ⊢ 𝑥 : 𝐴⟧ = 𝜂⟦𝐴⟧ ◦ 𝜋𝑥

⟦Γ ⊢ 𝜆𝑥.𝑡 : 𝐴→ 𝐵⟧ = 𝜂𝑇⟦𝐴⟧⟦𝐵⟧ ◦ Λ⟦𝑡⟧
⟦Γ ⊢ 𝑡1𝑡2 : 𝐵⟧ = app(⟦𝑡1⟧, ⟦𝑡2⟧)

In order to explain the interpretation we work in the category C so the application of
the monad 𝑇 is explicit. We also remove the semantic brackets for the sake of removing
clutter. Now, for 𝜆-abstraction we work as follows. Assume a map 𝑡 : Γ × 𝐴 → 𝑇𝐵.
We have to define a map Γ → 𝑇 (𝑇𝐵𝐴). By currying 𝑡 we obtain Λ𝑡 : Γ𝑇𝐵𝐴 and by
post-composing this map with 𝜂𝑇𝐵𝐴 we obtain the type 𝑇 (𝑇𝐵𝐴).

Function application is more tricky in that this is the point where we need the monad
to be strong. For two maps 𝑡1 : Γ → 𝑇 (𝑇𝐵𝐴) and 𝑡2 : Γ → 𝑇𝐴 We define the map
𝑎𝑝𝑝(𝑡1, 𝑡2) : Γ→ 𝑇𝐵 as follows:

Γ 𝑇𝐵

𝑇 (𝑇𝐵𝐴) × 𝑇𝐴 𝑇2𝐵

𝑇 (𝑇𝐵𝐴 × 𝑇𝐴) 𝑇 (𝑇 (𝑇𝐵𝐴 × 𝐴)) 𝑇3𝐵

app(𝑡1 ,𝑡2)
⟨𝑡1 ,𝑡2 ⟩

𝑠𝑡
𝑇𝐵𝐴,𝑇𝐴

𝜇𝐵

𝑇 (𝑠𝑡
𝑇𝐵𝐴,𝐴

) 𝑇2 (𝜖)

𝜇𝑇𝐵

References
[1] Steve Awodey. Category Theory. Oxford University Press, Inc., USA, 2nd edition,

2010.

[2] Jean-Yves Girard. Interprétation fonctionelle et élimination des coupures de
l’arithmétique d’ordre supérieur. Thèse d’État, Université Paris VII, 1972.

[3] C.A. Gunter. Semantics of Programming Languages: Structures and Techniques.
Foundations of computing. MIT Press, 1992.

[4] Saunders MacLane. Categories for the Working Mathematician. Springer-Verlag,
New York, 1971. Graduate Texts in Mathematics, Vol. 5.

30

[5] Alfio Martini. Category theory and the simply-typed lambda-calculus. 1996.

[6] B. Milewski. Category Theory for Programmers. Blurb, Incorporated, 2018.

[7] Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92,
1991.

[8] Andrew M. Pitts. Polymorphism is set theoretic, constructively. In David H.
Pitt, Axel Poigné, and David E. Rydeheard, editors, Category Theory and Com-
puter Science, Edinburgh, UK, September 7-9, 1987, Proceedings, volume 283 of
Lecture Notes in Computer Science, pages 12–39. Springer, 1987.

[9] John C. Reynolds. Types, abstraction and parametric polymorphism. In R. E. A.
Mason, editor, Information Processing 83, Proceedings of the IFIP 9th World
Computer Congress, Paris, France, September 19-23, 1983, pages 513–523.
North-Holland/IFIP, 1983.

[10] John C. Reynolds. Polymorphism is not set-theoretic. In Gilles Kahn, David B.
MacQueen, and Gordon D. Plotkin, editors, Semantics of Data Types, Interna-
tional Symposium, Sophia-Antipolis, France, June 27-29, 1984, Proceedings,
volume 173 of Lecture Notes in Computer Science, pages 145–156. Springer,
1984.

[11] Philip Wadler. Theorems for free! In Joseph E. Stoy, editor, Proceedings of
the fourth international conference on Functional programming languages and
computer architecture, FPCA 1989, London, UK, September 11-13, 1989, pages
347–359. ACM, 1989.

31

	Introduction
	Elements of Set Theory
	Relations and Functions
	Cardinality and Isomorphism
	Indexed Families of Sets
	The Russel's Paradox
	The Axiom of Regularity (Foundation)

	Categories
	Initial and terminal objects
	The Natural Numbers object
	Isomorphisms
	Opposite categories

	Products, CoProducts and Exponentials
	Products
	Coproducts
	Exponentials
	Semantics of the Simply Typed -Calculus
	Syntax
	Semantics

	Exercises

	Functors and Natural Transformations
	Categories of Functors
	Categories of Categories
	The Homset Functor
	Natural Isomorphisms

	Limits and Colimits
	Algebraic Data Types as Limits and Colimits

	Adjunctions
	Adjunctions
	Instances of Adjunctions
	Initial and Terminal Objects
	(Co)products and Products
	Exponentials
	(Co)Limits

	Semantics of Predicative Polymorphism
	Syntax
	Semantics

	Monads
	Adjunctions determine Monads
	The Kleisli Category
	The Computational -calculus
	Syntax
	Semantics

