
D O M I N I C O R C H A R D A N D M A R C O PAV I O T T I

C AT E G O R Y T H E O R Y
C O U R S E N O T E S

S C H O O L O F C O M P U T I N G , U N I V E R S I T Y O F K E N T

Contents

1 Introduction to Category Theory 5

2 Functors and Natural Transformations 13

3 Limits and Colimits 15

4 Adjunctions 19

5 Monads 27

6 Bibliography 31

1
Introduction to Category Theory

These notes were written during the postgraduate course on Category Theory
at the University of Kent in Canterbury (UK) and they are intended to offer a
quick introduction to category theory. Here instead of diving into the most
intricate categorical constructions we focus on applications of category
theory to semantics of programming languages. We will model the simply
typed 𝜆-calculus, predicative polymorphism and 𝜆-calculi with computational
effects.

There is a plethora of very well-written books about category which we
refer the reader to for a more in-depth introduction on the subject 1. 1 Steve Awodey. Category Theory. Oxford

University Press, Inc., USA, 2nd edition,
2010; and Saunders MacLane. Categories
for the Working Mathematician. Springer-
Verlag, New York, 1971. Graduate Texts in
Mathematics, Vol. 5

To learn an abstraction it is almost always advisable to have some concrete
notion of the subject we want to study or the abstraction itself will not mean
much. For a computer scientist, there are probably two ways to learn cate-
gory theory, that is through the lenses of mathematics or those of functional
programming. While the former is probably the best way the latter is the one
that many computer scientists would be more familiar with and in fact certain
authors have already preferred to take this path 2. 2 B. Milewski. Category Theory for

Programmers. Blurb, Incorporated, 2018In these notes we take yet a different approach which is an in-between be-
twen mathematics and programming languages. In fact, it is the mathematical
approach to programming language which goes under the name of denota-
tional semantics. The utopic idea is that a type should be regarded as a set
and a program should be regarded as a function between sets. Now of course
the more a programming language is equipped with more feature the harder
is to maintain this simplicist view. When using category theory to model
languages then a type should be an object and a program should be an arrow.
This analogy will be made more precise as we introduce the basic concepts.

We start out with some rudiments of set theory.

1.1 Elements of Set Theory

A set (or class) is an unordered collection of objects called elements of the
set. We write 𝑎 ∈ 𝑋 when 𝑎 is an element of the set 𝑋 and we read it as “𝑎
belongs to 𝑋”. Here are some important sets:

6 category theory course notes

• ∅ the empty set with no elements. The reader should ponder about the
difference between the empty set ∅ and the singleton set {∅} containing
the empty set.

• N the set of natural numbers {1, 2, 3, . . . }

• N0 the set of natural numbers with zero {0, 1, 2, 3, . . . }

• 𝐴 × 𝐵 the cartesian product of sets 𝐴, 𝐵 is the set containing the pairs
(𝑎, 𝑏) such that 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵.

• 𝐴 ∪ 𝐵 the union of sets 𝐴, 𝐵 is the set containing all elements of 𝐴 and of
𝐵. If there are equal elements in 𝐴, 𝐵 these become squashed together.

• 𝐴 ⊎ 𝐵 the disjoint union of sets 𝐴, 𝐵 is the set containing all elements
(1, 𝑎) for 𝑎 ∈ 𝐴 and (2, 𝑏) with 𝑏 ∈ 𝐵

A relation 𝑅 ⊆ 𝐴 × 𝐵 is a subset of the cartesian product 𝐴 × 𝐵 relating some
elements in 𝐴 with some elements in 𝐵. A function is a relation 𝑓 ⊆ 𝐴 × 𝐵

such that for an 𝑎 ∈ 𝐴 there exists only one 𝑏 ∈ 𝐵. We write the set of
functions between 𝐴 and 𝐵 as 𝐴→ 𝐵.

There is only one function from the empty set ∅ into any other set 𝐴, that
is the empty relation denoted by ! ⊆ ∅ × 𝐴. Dually, there is only one function
from any set 𝐴 to the singleton set {∗} for an element ∗. That is the function
sending every 𝑎 ∈ 𝐴 into ∗. We denote this map ! as well although it should
be clear from the context which one we mean.

An important notion in set theory is the one of size which indicates the
cardinality of a set. Two sets are said to be isomorphic when they have the
same cardinality. An isomorphism is given by a function 𝑓 : 𝐴 → 𝐵 and its
inverse 𝑓 −1 : 𝐵→ 𝐴 such that 𝑓 (𝑓 −1 (𝑥)) = 𝑥 and 𝑓 −1 (𝑓 (𝑥)) = 𝑥.

A set 𝐴 is finite if and only if it is isomorphic to the set {𝑚 ∈ N | 𝑚 ≤ 𝑛}
for some 𝑛 ∈ N. If this is the case it means we can enumerate the elements
of 𝐴 and write 𝐴 as {𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑛}. This is because intuitively we could
write down its elements on a piece of paper in a finite amount of time. We
say a set is infinite iff it is not finite. A set is countable if it is isomorphic to
the natural numbers.

For a set 𝐼 we denoted the family of sets indexed by 𝐼 as {𝐴𝑖}𝑖∈𝐼 . In the
case 𝐼 is finite the family {𝐴𝑖}𝑖∈𝐼 is finite and we can write both the finite
union and product of these sets as follows:

𝐴1 ∪ 𝐴2 ∪ · · · ∪ 𝐴𝑛

and similarly for the product. In the case 𝐼 is infinite the union of the infinite
family of sets can be written simply as⋃

𝑖∈𝐼
𝐴𝑖 = {𝑎 ∈ 𝐴𝑖 | 𝑖 ∈ 𝐼}

introduction to category theory 7

Dually the infinite product or dependent product is defined by the set of
functions that given an index 𝑖 ∈ 𝐼 return an element in 𝐴𝑖 .

Π𝑖∈𝐼𝐴𝑖 = { 𝑓 : 𝐼 →
⋃
𝑖∈𝐼

𝐴𝑖 | 𝑓 (𝑖) ∈ 𝐴𝑖}

1.2 Categories

As explained above, the intuition the reader should have is that when talking
about well-typed programming languages, types should be regarded as ob-
jects and programs should be regarded as arrows. This sort of motivates the
definition of a category3 3 Disclaimer: category theory was of course

invented way before we started giving
semantics of programming languages by
Samuel Eilenberg and Saunders MacLane.

Definition 1.2.1 (Category). A category C is a collection of objects 𝐴, 𝐵,𝐶 . . .

denoted by Obj(C) and a set of arrows 𝑓 , 𝑔, ℎ . . . denoted by Arr(C). Addi-
tionally, for each object 𝐴 there exists an identity arrow 𝑖𝑑𝐴 : 𝐴 → 𝐴 such
that and for arrows 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐶 we there exists an arrow
𝑔 ◦ 𝑓 : 𝐴→ 𝐶 such that the identity and associativity laws hold:

𝑖𝑑𝐴 ◦ 𝑓 = 𝑓 ◦ 𝑖𝑑𝐴 = 𝑓

𝑓 ◦ (𝑔 ◦ ℎ) = (𝑓 ◦ 𝑔) ◦ ℎ

Example 1.2.1. The category where objects are sets and arrows are functions
between them is denoted by Set.

1.3 Initial and terminal objects

The initial object is an object denoted by 0 such that for every other object 𝐴
there exist a unique arrow 0 → 𝐴. This is called the universality property
of the object 0. We draw a drashed arrow as follows to indicate the arrow is
unique:

0 𝐴

Similarly, the terminal object is denoted by 1 and is such that for every
other object 𝐴 there is a unique arrow 𝐴→ 1

𝐴 1

It is important to know that such objects in category theory are unique
only up-to isomorphism.

Let us look at an example to see this. In Set, the initial object is the empty
set ∅ since there is a unique function from the empty set to any other set 𝐴,
that is the empty function. Similarly, the terminal object is any singleton set
since for any singleton set, say the set {∗}, for a given set 𝐴 there is a unique
function in to {∗} which is the constant function mapping every element
𝑥 ∈ 𝐴 into ∗. Notice that there are many terminal object in category, but they
are all isomorphic in that they all contain only one element.

8 category theory course notes

1.4 Isomorphisms

Category theory abstracts the notion of isomorphism.

Definition 1.4.1 (Isomorphism). Two given objects 𝐴 and 𝐵 are isomorphic,
written 𝐴 � 𝐵 iff there exists an arrow 𝑓 : 𝐴 → 𝐵 that has an inverse
𝑔 : 𝐵→ 𝐴 such that

𝑔 ◦ 𝑓 = 𝑖𝑑𝐴 𝑓 ◦ 𝑔 = 𝑖𝑑𝐵

This definition is the correct definition of isomorphism in the following
sense.

As per the categorical definition, an isomorphism in Set is a pair of func-
tions which are inverses to each other. This corresponds to saying that two
sets are isomorphism if they have the same cardinality, which is equivalent
to saying that there exists a function 𝑓 : 𝐴 → 𝐵 such that is surjective and
injective.

However, consider the the category Pos of partial order sets and order
preserving functions. The following are two posets which are not isomorphic:

1 2 1 2

⊥ ⊥

since in the right-hand side poset the ⊥ element is not ordered with 1. De-
spite the fact that these two posets are in bĳection they are not isomorphic
because any bĳection would be able to preserve the order ⊥ ≤ 1 from the left
to the right-hand side poset (while still being a bĳection).

1.5 Cartesian Closed Categories

In this section we will introduce the basic building blocks to be able to in-
terpret the simply typed 𝜆-calculus (STLC). We first introduce products and
exponentials.

1.5.1 Products

We proceed generalise the set-theoretical concept of cartesian product 𝐴 × 𝐵.

Definition 1.5.1 (Product). For two objects 𝐴 and 𝐵 the product is an object
𝑃 quipped with two arrows 𝜋1 : 𝑃 → 𝐴 and 𝜋2 : 𝑃 → 𝐵 such that for
any object 𝑍 with arrows 𝑓 : 𝑍 → 𝐴 and 𝑔 : 𝑍 → 𝐵 there exists a unique
morphism ℎ : 𝑍 → 𝑃 making the following diagram commute:

𝐴 𝑃 𝐵

𝑍

𝑓 𝑔

𝜋2𝜋1

ℎ

introduction to category theory 9

There is a notational convention where we write 𝐴 × 𝐵 for the product
of two objects 𝐴 and 𝐵 and ⟨ 𝑓 , 𝑔⟩ for ℎ which means we can rewrite the
diagram as follows:

𝐴 𝐴 × 𝐵 𝐵

𝑍

𝑓 𝑔

𝜋2𝜋1

⟨ 𝑓 ,𝑔⟩

Proposition 1.5.1 (Products are unique up to isomorphism). That is, if we
have a category with two notions of product, then there is an isomorphism
between these products.

Exercise 1.5.1. Prove Proposition 1.5.1. Hint: you have to prove that for two
objects 𝐴 and 𝐵 if you have two products 𝑃 and 𝑃′ for the same two objects
you can derive an isomorphism. This is constructed by using the universality
property of products.

1.5.2 Exponentials

In this section we generalise the idea of function space between two sets.

Definition 1.5.2 (Exponentials). An exponential is an object denoted by 𝐵𝐴

which has an arrow 𝜖 : 𝐴 × 𝐵𝐴 → 𝐵 called the evaluation map which is
such that for every arrow 𝑓 : 𝑍 → 𝐵 there exists a unique arrow, denoted
by Λ 𝑓 : 𝑍 → 𝐵𝐴 and pronounced the currying of a function, such that the
following diagram commutes

𝐵𝐴 𝑍 × 𝐵𝐴 𝐵

𝑍 𝑍

𝑓
𝑍×Λ 𝑓

𝜖

Λ 𝑓

1.6 Semantics of the Simply Typed 𝜆-Calculus

In this section we look at a categorical semantics for the Simply-Typed 𝜆-
calculus (STLC)4. 4 Alfio Martini. Category theory and the

simply-typed lambda-calculus. 1996

1.6.1 Syntax

We first define the syntax of STLC by defining the set of types, the set of
terms and the typing judgment relation. The set of types Types also induc-
tively as follows

𝐴, 𝐵 ∈ Types ::= unit (unit type)
| nat (natural numbers)
| 𝐴 × 𝐵 (products)
| 𝐴→ 𝐵 (functions)

while the set of 𝜆-terms Terms is inductively defined as follows

10 category theory course notes

𝑡 ∈ Terms ::= 𝑥 (terms variables)
| 𝑛 (natural numbers)
| 𝜆𝑥.𝑡 | 𝑡1𝑡2 (functions)
| (𝑡1, 𝑡2) | 𝜋1 (𝑡) | 𝜋2 (𝑡) (products)

and finally, a typing judgement relation ⊢ inductively as follows

(𝑥 : 𝐴) ∈ Γ
Γ ⊢ 𝑥 : 𝐴 Γ ⊢ () : unit Γ ⊢ 𝑛 : nat

Γ ⊢ 𝑡 : 𝐴 × 𝐵
Γ ⊢ 𝜋1 (𝑡) : 𝐴

Γ ⊢ 𝑡 : 𝐴 × 𝐵
Γ ⊢ 𝜋2 (𝑡) : 𝐵

Γ ⊢ 𝑡1 : 𝐴 Γ ⊢ 𝑡2 : 𝐵
Γ ⊢ ⟨𝑡1, 𝑡2⟩ : 𝐴 × 𝐵

Γ ⊢ 𝑡1 : 𝐴→ 𝐵 Γ ⊢ 𝑡2 : 𝐴
Γ ⊢ 𝑡1𝑡2 : 𝐵

Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ 𝜆𝑥.𝑡 : 𝐴→ 𝐵

1.6.2 Semantics

The semantics of a programming language is given by the semantic function
mapping the syntax into the meaning of the language. This function is tradi-
tionally denoted by ⟦·⟧ and pronounced the semantic brackets. We use the
semantic brackets for both the types, terms and the context interpretation.
First we need to interpret the contexts. Since these are essentially finite lists
we need a category with finite products. Thus define ⟦Γ⟧ by assuming that
every context Γ is a finite list of typed variables 𝑥1 : 𝐴1, · · · , 𝑥𝑛 : 𝐴𝑛:

⟦𝑥1 : 𝐴1, · · · , 𝑥𝑛 : 𝐴𝑛⟧ = ⟦𝐴1⟧ × · · · × ⟦𝐴𝑛⟧

Or equivalently, by interpreting the context by induction on the list:

⟦.⟧ = 1

⟦Γ, 𝑥 : 𝐴⟧ = ⟦Γ⟧ × ⟦𝐴⟧

which is a more intuitive definition for readers familiar with functional pro-
gramming.

The interpretation of types is then a function ⟦⟧ : Types → Obj(C)
from syntactic types into object of a category enforcing the intuition that in
categorical semantics we think of types as objects:

⟦unit⟧ = 1

⟦nat⟧ = N

⟦𝐴 × 𝐵⟧ = ⟦𝐴⟧ × ⟦𝐵⟧
⟦𝐴→ 𝐵⟧ = ⟦𝐵⟧⟦𝐴⟧

And, finally, the function ⟦·⟧ : Terms → Arr(C) interprets a term as
a morphism between two objects in the category C. However, to be more
precise we only interpret well-typed terms, thus it would be more correct
to say that a typing derivation Γ ⊢ 𝑡 : 𝐴 is interpreted as an arrow ⟦𝑡⟧ of

introduction to category theory 11

type ⟦Γ⟧ → ⟦𝐴⟧, therefore abusing some notation the correct type of the
interpretation would be something like:

⟦Γ ⊢ 𝑡 : 𝐴⟧ : ⟦Γ⟧
⟦𝑡⟧
−−→ ⟦𝐴⟧

which is notation
We now define this function by induction on the typing judgement:

⟦Γ ⊢ () : unit⟧ =!

⟦Γ ⊢ 𝑛 : nat⟧ = 𝑛

⟦Γ ⊢ 𝑥 : 𝐴⟧ = 𝜋𝑥

⟦Γ ⊢ prj1 (𝑁) : 𝐴⟧ = 𝜋1 ◦ ⟦𝑁⟧
⟦Γ ⊢ prj2 (𝑀) : 𝐵⟧ = 𝜋2 ◦ ⟦𝑀⟧

⟦Γ ⊢ (𝑀 , 𝑁) : 𝐴 × 𝐵⟧ = ⟨⟦𝑀⟧, ⟦𝑁⟧⟩
⟦Γ ⊢ 𝜆𝑥.𝑀 : 𝐴→ 𝐵⟧ = Λ⟦𝑀⟧

⟦Γ ⊢ 𝑀𝑁 : 𝐵⟧ = 𝜖 ◦ ⟨⟦𝑀⟧, ⟦𝑁⟧⟩

where ! : ⟦Γ⟧ → 1 is the unique map into the terminal object and 𝑛 : Γ →
N is the map disregarding the context and returning the number denoted
syntactically by 𝑛. In Set, for example, there would be a constant map 𝜆𝛾.𝑛
for each 𝑛.

1.7 Opposite categories

Definition 1.7.1 (Opposite category). For a category C, there is a category
Cop which has as objects the same objects as C and for every morphism
𝑓 : 𝐴→ 𝐵 in C a morphism 𝑓 op : 𝐵→ 𝐴

𝑓 ∈ homC (𝑋 ,𝑌) ⇐⇒ 𝑓 op ∈ homCop (𝑌 , 𝑋)

Example 1.7.1 (Is Set � Setop?). Whenever we have an isomorphism
𝑓 : 𝑋 → 𝑌 , every property that holds for 𝑋 should hold for 𝑌 and viceversa.

Now assume we have an isomorphism (of categories) 𝐹 : Set → Setop

and consider a map 𝑓 : 𝐴 → ∅ in Set. (You should read about initial and
terminal objects to understand what ∅ is).

Since ∅ is initial in Set then 𝐹∅ should be terminal in Setop. Now 𝐹 𝑓 :
𝐹𝐴 → 𝐹∅ is a map in Setop and because 𝐹∅ is terminal we have many more
arrows 𝐹𝐴→ 𝐹∅ than 𝐴→ ∅. Exercise: Work this out!.

Example 1.7.2 (Is Rel � Relop?). First off, Rel has as objects sets 𝑋 ,𝑌 , 𝑍
and an arrow 𝑓 : 𝑋 → 𝑌 is a relation 𝑓 ⊆ 𝑋 ×𝑌 . Define now two functors
𝐹 : Rel → Relop and 𝐺 : Relop → Rel such that they are one the inverse of
the other. We define 𝐹𝑋 = 𝑋 and 𝐹 (𝑅 : 𝑋 → 𝑌) (𝑦 ∈ 𝑌) = {𝑥 | 𝑥 𝑅 𝑦} and
𝐺𝑋 = 𝑋 and 𝐺 (𝑅 : 𝑌 → 𝑋) (𝑦 ∈ 𝑌) = {𝑥 | 𝑦 𝑅 𝑥}

Verify that this is an isomorphism. (You first need to define the composi-
tion of two morphisms (relations) in Rel)

2
Functors and Natural Transformations

Definition 2.0.1 (Functor). Let C and D be two categories. A functor 𝐹 :
C → D is a mapping between categories that associates objects in C to an
object 𝐹𝐶 ∈ Obj(C) and that has additionally a functorial action associating
arrows 𝑓 ∈ hom(𝐴, 𝐵) to arrows 𝐹 (𝑓) ∈ hom(𝐹𝐴, 𝐹𝐵) which additionally
preserves identity and composition:

𝐹 (𝑖𝑑𝐴) = 𝑖𝑑𝐹𝐴 𝐹 (𝑔 ◦ 𝑓) = 𝐹 (𝑔) ◦ 𝐹 (𝑓)

Every functor preserves isomorphisms:

𝐴 � 𝐵⇒ 𝐹𝐴 � 𝐹𝐵

A functor whose functorial action is surjective is called full. whilst when the
functorial action is injective the functor is called faithful.

Proposition 2.0.1. A fully faithful functor 𝐹 preserves and reflects isomor-
phisms:

𝐴 � 𝐵 ⇐⇒ 𝐹𝐴 � 𝐹𝐵

Exercise 2.0.1. Prove Proposition 2.0.1

Definition 2.0.2 (Natural Transformation). For two functors 𝐹,𝐺 : C → D,
a natural transformation is a family of arrows 𝜙𝐴 : 𝐹𝐴 → 𝐺𝐴 such that for
every arrow 𝑓 : 𝐴→ 𝐵 the following diagram commutes:

𝐹𝐴 𝐺𝐴

𝐹𝐵 𝐺𝐵

𝜙𝐴

𝜙𝐵

𝐹 (𝑓) 𝐺 (𝑓)

2.1 The Homset Functor

Given a (locally small) category C1 the homset homC (𝐴, 𝐵), for any two 1 A category is small if the collection of the
objects forms a set and it is "locally small"
if for any two objects 𝐴, 𝐵 the collection of
arrows between them is a set, however, we
do not delve into size issues in these notes.

objects 𝐴, 𝐵, induces two functors.
The first is the covariant functor homC (𝐴,−) : C → Set which sends an

object 𝐵 to the set of arrows between 𝐴 and 𝐵 and an arrow 𝐵 → 𝐵′ to the

14 category theory course notes

functorial action homC (𝐴, 𝑓) : homC (𝐴, 𝐵) → homC (𝐴, 𝐵′) which sends an
arrow 𝑔 : 𝐴→ 𝐵 to the post-composition 𝑓 ◦ 𝑔 : 𝐴→ 𝐵′.

The second is the contravariant functor homC (−, 𝐵) : Cop → Set which
sends an object 𝐴 to the set of arrows between 𝐴 and 𝐵. This functor is
contravariant because it takes an arrow 𝐴 → 𝐴′ to the functorial action
homC (𝑓 , 𝐵) : homC (𝐴′, 𝐵) → homC (𝐴, 𝐵) which sends an arrow 𝑔 : 𝐴′ →
𝐵 to the pre-composition 𝑔 ◦ 𝑓 : 𝐴→ 𝐵.

2.1.1 Natural Isomorphisms

A natural isomorphism is an isomorphism of functors. We the tools provided
by category theory this should not be a hard notion to derive since we can
form the category of functors CD and natural transformations betwen them.
At this point an isomorphism in this category is precisely an isomorphism of
functors.

More precisely, for two functors 𝐹,𝐺 : C → D we say these two functors
are isomorphism if there exist a natural transformation 𝜙 : 𝐹

·−→ 𝐺 which has
an inverse 𝜙−1 : 𝐺

·−→ 𝐹 which is also a natural transformation.

Example 2.1.1. For example, the stream functor Str · : Set→ Set defined by
the greatest solution to the following equation

Str 𝐴 � 𝐴 × Str 𝐴 (2.1)

is isomorphic to the functor homSet (N,−), i.e. the following isomorphism is
natural in 𝐴

Str 𝐴 � homSet (N, 𝐴) (2.2)

Exercise 2.1.1. Prove this fact by defining a natural transformation 𝜙𝐴 :
Str 𝐴→ homSet (N, 𝐴) and its inverse.

In general, any covariant functor 𝐹 that is isomorphic to the hom functor
homC (𝐴,−) for some 𝐴 ∈ Obj(()C) is called representable.

Exercise 2.1.2. Show that the type of lists as defined below

List𝐴 � 1 + 𝐴 × List𝐴 (2.3)

is not representable.

3
Limits and Colimits

We are going to proceed up the ladder of abstraction and generalise the notion
of arbitrary products and coproducts.

Given a set 𝐼 and a family of sets indexed by 𝐼, {𝐴𝑖} we can form the
dependent product of these sets Π𝑖∈𝐼𝐴𝑖 which informally is the product of all
sets 𝐴𝑖

𝐴1 × 𝐴2 × 𝐴3 × · · · × 𝐴𝑛 × . . .
Dually we can form the dependent sum is denoted by

∑
𝑖∈𝐼 𝐴𝑖 and can be

written informally as follows:

𝐴1 + 𝐴2 + 𝐴3 + · · · + 𝐴𝑛 + . . .

Limits and Colimits are just generalisation of these concepts.

Definition 3.0.1 (Cone). For a diagram 𝐷 : I → D, a cone is an object 𝐶
such that ther exists a family of maps 𝜋𝑖 : 𝐶 → 𝐷𝑖 and such that

𝐷 (𝑓) ◦ 𝜋𝑖 = 𝜋 𝑗 (3.1)

for every 𝑓 : 𝑖 → 𝑗 .

Definition 3.0.2 (Limit). For a diagram 𝐷 : I → C, a limit is a universal
cone 𝑃, that is a cone that for any other cone for 𝐷, say 𝐶, there exists a
unique arrow ℎ : 𝐶 → lim𝑖∈I 𝐷𝑖 such that

𝜋𝑖 ◦ ℎ = 𝑓𝑖 (3.2)

for every 𝑖 ∈ I. The picture below summarises the situation:

𝐷 𝑗 𝐷 𝑗′

lim←−−𝐷𝑖

𝐶

𝜋 𝑗 𝜋 𝑗′

𝐷 (𝑓)

𝑓 𝑗
ℎ

𝑓 𝑗′

We denote the limit of a diagram 𝐷 by lim←−−𝑖∈I 𝐷𝑖

Exercise 3.0.1. The notion of colimit is obtained by reversing the arrows.
Derive it by exercise.

16 category theory course notes

Dependent Products and Sums The dependent product and dependent sum
are just limits and colimits respectively where the category I is discrete1. 1 The category of objects and identity arrows

In this particular case the coherence conditions (3.1) on the projections are
vacuous because there are no meaningful arrows in the index category. This
means, for example in the case of the product, that every tuple is in the limit
as opposed to just those that satisfy the coherence condition.

Powers and Copowers Assume that our diagram 𝐷 : I → C is constant
additionally to the category I being discrete and assume 𝐷 (𝑖) = 𝐴 for some
𝐴 ∈ C. Then we have another special case where the dependent product
becomes a product of the same object Π𝑖∈I𝐴 which is called the power and
denoted by 𝐴I . Note that this is in general different from the exponential be-
cause I is a category, not an object. However, in Set the power is isomorphic
to the function space I → 𝐴 since I can be viewed as a set because it is
discrete1. 1 Notice that I needs to be small for the

collection of objects to be a set, but again,
size issues are not really an issue for the
focus of these notes

Similarly, the copower is a special case of dependent sum when 𝐷 is
constant and is denoted by I • 𝐴. Moreover in Set, this is just the pair I × 𝐴

with I again viewed as a set.

3.1 Algebraic Data Types as Limits and Colimits

Streams as Limits Assume C is a category with all limits. The streams over
𝐴 from definition (2.1) are obtained as the limit for a diagram. We first define
the functor 𝐹 : Set → Set by 𝐹𝑋 = 𝐴 × 𝑋 giving the non-recursive shape of
the streams. Then we define the 𝜔op-chain of approximations represented by
the diagram 𝐷 : 𝜔op → C defined on object by 𝐷 (1) = 1 and 𝐷 (𝑛 + 1) = 𝐹𝑛1
and on arrows by 𝐷 (1 ≤ 2) =! (the unique map to the terminal object) and
𝐷 (𝑛 ≤ 𝑛 + 1) = 𝐹𝑛!. The limit of this 𝜔op-chain is the type of coinductive
streams as depicted below:

lim←−− 𝐹
𝑛1

1 𝐹1 𝐹21 · · · 𝐹𝑛1 · · ·
! 𝐹! 𝐹𝑛−1!𝐹2! 𝐹𝑛1

𝜋1 𝜋2 𝜋3 𝜋𝑛+1

Lists as Colimits Assume C is a category with all colimits. The lists over 𝐴
from definition (2.3) are obtained as the colimit for a diagram. We first define
the functor 𝐹 : Set→ Set by 𝐹𝑋 = 1 + 𝐴 × 𝑋 giving the non-recursive shape
of the lists. Then we define the 𝜔-chain of approximations represented by the
diagram 𝐷 : 𝜔 → C defined on object by 𝐷 (1) = 0 and 𝐷 (𝑛 + 1) = 𝐹𝑛0
and on arrows by 𝐷 (1 ≤ 2) =! (the unique map from the initial object) and
𝐷 (𝑛 ≤ 𝑛 + 1) = 𝐹𝑛!. The colimit of this 𝜔-chain is the type of coinductive
streams as depicted below:

limits and colimits 17

lim−−→ 𝐹𝑛0

0 𝐹1 𝐹21 · · · 𝐹𝑛1 · · ·
! 𝐹! 𝐹𝑛−1!𝐹2! 𝐹𝑛1

inj1 inj2 inj3 inj𝑛+1

4
Adjunctions

Almost every universality property comes from an adjunction1 and certainly 1 More in general a universal map is the
initial object in the comma category 𝑋 ↓ 𝐹,
but that is not our concern here.

all the constructions seen so far are in fact an instance of an adjunction.

4.0.1 Adjunctions

Given two functors 𝐿 : D → C and 𝑅 : C → D and adjunction is an
isomorphism of homsets

⌊·⌋ : C(𝐿𝐴, 𝐵) � D(𝐴, 𝑅𝐵) : ⌈·⌉

which is furthermore natural in 𝐴 and 𝐵. Here ⌊·⌋ and ⌈·⌉ are the maps wit-
nessing the isomorphism. The adjunction is usually depicted as follows

C D
𝐿

𝑅

⊣

We say that that 𝐿 is left adjoint to 𝑅, and viceversa, 𝑅 right adjoint to 𝐿.
However, you draw the adjunction the turnstile points towards the left-adjoint
as indicated by 𝐿 ⊢ 𝑅.

As a consequence of the isomorphism we have that for all 𝑓 : 𝐿𝐴 → 𝐵

and 𝑔 : 𝐴→ 𝑅𝐵 there is a correspondence of arrows:

⌊ 𝑓 ⌋ = 𝑔 ⇐⇒ 𝑓 = ⌈𝑔⌉

moreover, the natural isomorphism gives rise to the fusion laws. For 𝑎 : 𝐴′ →
𝐴, 𝑏 : 𝐵→ 𝐵′, 𝑓 : 𝐿𝐴→ 𝐵 and 𝑔 : 𝐴→ 𝑅𝐵

𝑅(𝑏) · ⌊ 𝑓 ⌋ = ⌊𝑏 · 𝑓 ⌋ (4.1)

⌊ 𝑓 ⌋ · 𝑎 = ⌊ 𝑓 · 𝐿 (𝑎)⌋ (4.2)

𝑏 · ⌈𝑔⌉ = ⌈𝑅(𝑏) · 𝑔⌉ (4.3)

⌈𝑔⌉ · 𝐿 (𝑎) = ⌈𝑔 · 𝑎⌉ (4.4)

This is really all about adjunctions. All the other definitions and con-
structions are equivalent to this one. Furthermore, this material is very well
covered elsewhere (e.g. in Awodey’s book 1) so we will not be covering it 1 Steve Awodey. Category Theory. Oxford

University Press, Inc., USA, 2nd edition,
2010

further.

20 category theory course notes

4.1 Instances of Adjunctions

4.1.1 Initial and Terminal Objects

Assume that we have a category 1 with only one object ∗ and one arrow, the
identity arrow 𝑖𝑑∗. Then the universality property of the initial and terminal
object can be then rephrased in terms of adjunctions

C 1 C
0

Δ

Δ

1

⊣ ⊣

where 0 is the constant functor returning the initial object and 1 is the functor
returning the terminal object while Δ is the constant functor returning the
element ∗.

We can prove that if the above are indeed adjunctions then the functors
0 and 1 must given the initial and terminal object respectively. The isomor-
phism given by the adjunction with 0 as left adjoint is as follows:

⌊·⌋ : homC (0,𝑌) � hom1 (∗, ∗) : ⌈·⌉

while for the terminal object the adjunction is given by the following natural
isomorphism:

⌊·⌋ : hom1 (∗, ∗) � homC (𝑋 , 1) : ⌈·⌉

Exercise 4.1.1. Compute the two naturality conditions and derive the fusion
laws.

We now proceed with the universal property of products and coproducts.

4.1.2 (Co)products and Products

Similary the coproduct arises as the left adjoint of the diagonal functor Δ :
C → C × C which is defined as Δ𝑋 = (𝑋 , 𝑋) while the product arises as the
right adjoint of the functor Δ:

C C × C C
+

Δ

Δ

×

⊣ ⊣

Exercise 4.1.2. Derive the fusion laws and conclude these are exactly those
of the product and coproduct respectively.

4.1.3 Exponentials

The exponential is given by the right adjoint of the functor (− × 𝐴). That is
the functor (−)𝐴:

C C
(−)𝐴

(−)×𝐴

⊣

adjunctions 21

The isomorphism induced by this adjunction is stated as follows:

⌊·⌋ : homC (𝑋 × 𝐴,𝑌) � homC (𝑋 ,𝑌 𝐴) : ⌈·⌉

Notice that here ⌊·⌋ and ⌈·⌉ are respectively the curry and uncurry operations
in functional programming.

4.1.4 (Co)Limits

Limits and colimits stem from adjunctions too.
The limit, in particular, extends to a functor from the category of diagrams

CI to the category C simply taking a diagram and returning its limit. This
functor is right adjoint to the diagonal functor Δ : C → CI defined as
Δ𝑋𝐼 = 𝑋 mapping an object to the constant diagram which returns that
object. Dually, colimits are left-adjoints to the diagonal functor. The situation
is depicted below:

C CI C
lim−→

Δ

Δ

lim←−

⊣ ⊣

At this point the reader should notice that the similarity between initial
and terminal, coproducts and products and colimits and limits. Indeed initial
objects and coproducts are special cases of colimits while terminal objects
and products are special cases of limits.

4.2 Semantics of Predicative Polymorphism

Polymorphism is a core feature of most programming languages allowing
developers to craft generic programs which are agnostic to the specifics of the
types.

In programming languages like C, we can define algorithms that work
for lists that contain different types, but we have to define the algorithm
for each and everyone of the specific type we want to handle. This type of
polymorphism is called ad-hoc polymorphism. Predicative polymorphism
allows the programmer to write one function that is parametric on the type
or, in words, it takes a generic type with the promise that the data of that
type will not be inspected. Therefore, this kind of algorithm can be said
to be agnostic as to the type of data structure given. This allows for code
reusability since a polymorphic program can be written only once and can
work at all types.

This flexibility provides a layer of confidence regarding the properties of
the code. Philip Wadler’s paper 2 offers a comprehensive exploration of these 2 Philip Wadler. Theorems for free! In

Joseph E. Stoy, editor, Proceedings of
the fourth international conference on
Functional programming languages and
computer architecture, FPCA 1989, London,
UK, September 11-13, 1989, pages 347–359.
ACM, 1989

properties.
As an example, in a total language there is no program of type ∀𝛼.𝛼 since

such a program would need to yield a value of an arbitrary type 𝛼. Conse-
quently, ∀𝛼.𝛼 can be viewed as the empty type 0, which, in a total language1,

1 There are of course issues with non-
termination but we will not address them
here

22 category theory course notes

acts as the initial object.
Similarly, ∀𝛼.𝛼 → 𝛼 has only one inhabitant, namely the identity function

Λ𝛼.𝜆𝑥.𝑥, with Λ abstracting a type variable and 𝜆 abstracting a term variable.
Now the reverse function, reversing a list, is indeed a polymorphic

function since it needs not inspecting the content of the single element in a
list:

∀𝛼.List 𝛼→ List 𝛼 (4.5)

This type grants universality by reversing elements without inspecting their
specifics. Conversely, any sorting algorithm on lists needs to know that the
inner type inside the list as some kind of ordering associated with it, render-
ing (4.5) unsuitable for quicksort or mergesort, for instance.

Once we defined a polymorphic function, we have the liberty to instantiate
it with any desired type, even itself. This style of polymorphism is called
impredicative and was first introduced by Girard in 1972 3 in the context of 3 Jean-Yves Girard. Interprétation fonc-

tionelle et élimination des coupures de
l’arithmétique d’ordre supérieur. Thèse
d’État, Université Paris VII, 1972

proof theory and then proposed by Reynolds in 1983 4 as a programming

4 John C. Reynolds. Types, abstraction and
parametric polymorphism. In R. E. A. Ma-
son, editor, Information Processing 83, Pro-
ceedings of the IFIP 9th World Computer
Congress, Paris, France, September 19-23,
1983, pages 513–523. North-Holland/IFIP,
1983

language known was System F or second-order 𝜆-calculus.
For instance, the reverse function might operate on elements of type N

or 𝜂, but also on the type (4.5) itself.
While impredicative polymorphism is convenient in programming lan-

guages, it poses a significant foundational problem when seeking for a se-
mantic model as we did in Section 1.6. As we have seen the task of seeking a
denotational model is to find a universe of setsU and interpreting types with
𝑛 free variables as mapsU𝑛 → U. Assuming no free variables, we would
like to interpret ∀𝛼.𝛼 as a set. Naively we could try to interpret it as the prod-
uct of sets indexed over sets. Now, the denotation of ∀𝛼.𝛼 would be a set for
the interpretation to work and, as a result, we would have that the product of
all sets would be the set containing all sets which is a paradoxical statement
known as the Russell’s paradox, suggesting that such a set cannot exist. This
fact was discovered by Reynolds in 1984 5. 5 John C. Reynolds. Polymorphism is not

set-theoretic. In Gilles Kahn, David B.
MacQueen, and Gordon D. Plotkin, editors,
Semantics of Data Types, International
Symposium, Sophia-Antipolis, France, June
27-29, 1984, Proceedings, volume 173 of
Lecture Notes in Computer Science, pages
145–156. Springer, 1984

Models of impredicative polymorphism have eventually been found by
Pitts 6 who showed this in constructive set theory.

6 Andrew M. Pitts. Polymorphism is set
theoretic, constructively. In David H. Pitt,
Axel Poigné, and David E. Rydeheard,
editors, Category Theory and Computer
Science, Edinburgh, UK, September 7-9,
1987, Proceedings, volume 283 of Lecture
Notes in Computer Science, pages 12–39.
Springer, 1987

In these notes, we are going to avoid this problem and restrict ourselves to
predicative polymorphism which is a variant of impredicative polymorphism
where polymorphic types (polytypes or type schemes) can only be instantiated
with non-polymorphic types (monotypes).

4.2.1 Syntax

The language we are going to define is called ML0 . We first define the syn-
tax by defining the set of monotypes, the set of polytypes, the set of terms and
the typing judgment relation. The set of types monotypes and polytypes is
defined inductively as follows:

adjunctions 23

𝐴, 𝐵 ∈ Types0 ::= 𝛼 (type variables)
| unit (unit type)
| nat (natural numbers)
| 𝐴 × 𝐵 (products)
| 𝐴→ 𝐵 (functions)

𝜏 ∈ Types1 ::= 𝐴 | ∀𝛼.𝜏 (predicative polymorphism)

Notice that polytypes are of the form ∀𝛼.∀𝛽.𝐴 where 𝐴 is a monotype. Thus
types of the form ∀𝛼.(∀𝛽.𝛽) → 𝛼 for example are not allowed.

The set of 𝜆-terms Terms is inductively defined as follows:

𝑡 ∈ Terms ::= 𝑥 (terms variables)
| () (unit)
| 𝑛 (natural numbers)
| (𝑡1, 𝑡2) | 𝜋1 (𝑡) | 𝜋2 (𝑡) (products)
| 𝜆𝑥.𝑡 | 𝑡1𝑡2 (functions)
| let 𝑥 = 𝑡1 in 𝑡2 | Λ𝛼.𝑡 | 𝑡@𝐴 (polymorphism)

where Λ is a binder which abstracts over type variables, the let binds a
program 𝑀 of a polytype inside a program 𝑁 which returns a monotype. This
allows the programmer to write programs such as

let 𝑥 = 𝑖𝑑 in 𝑥@unit : unit→ unit

where 𝑖𝑑 : ∀𝛼.𝛼 → 𝛼 and the constructor 𝑀@𝐴 is the application for terms
that have a polytype as a type.

Note that since we have defined types using to separate layers for gram-
mars we can constrain the types that we are going to apply to polymorphic
programs. In fact, in the constructor 𝑀@𝐴 only monotypes are allowed.

We first define a judgment for the contexts and the types. Technically,
there are two judgments for types, one for the monotypes and one for the
polytypes, but we adopt the same notation for both of them as it should be
clear from the context which judgment we mean. First a type context is a
list of variables. Theunit type can be typed in any well-formed context and
and a type variable can by typed in any well-formed context that contains
it. Finally the polymorphic types ∀𝛼.𝜏 are well-typed if the body 𝜏 is open
in 𝛼 and well-typed: The context for term variables is instead a list of pairs
𝑥 : 𝜏 implying that variables are of poly-typed and therefore can also be
mono-typed.

Γ = (𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛)

We now define the typing judgment for terms. Again, there are technically
two typing judgments, the first for mono-typed programs and the second for
poly-typed programs. Once again, it should be clear from the context which

24 category theory course notes

judgment we are using:

(𝑥 : 𝜏) ∈ Γ
Γ ⊢ 𝑥 : 𝜏 Γ ⊢ () : unit Γ ⊢ 𝑛 : nat

Γ ⊢ 𝑡 : 𝐴 × 𝐵
Γ ⊢ 𝜋1 (𝑡) : 𝐴

Γ ⊢ 𝑡 : 𝐴 × 𝐵
Γ ⊢ 𝜋2 (𝑡) : 𝐵

Γ ⊢ 𝑡1 : 𝐴 Θ | Γ ⊢ 𝑡2 : 𝐵
Γ ⊢ ⟨𝑡1, 𝑡2⟩ : 𝐴 × 𝐵

Γ ⊢ 𝑡1 : 𝐴→ 𝐵 Γ ⊢ 𝑡2 : 𝐴
Γ ⊢ 𝑡1𝑡2 : 𝐵

Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ 𝜆𝑥.𝑡 : 𝐴→ 𝐵

Γ ⊢ 𝑡1 : 𝜏 Γ, 𝑥 : 𝜏 ⊢ 𝑡2 : 𝐴
Γ ⊢ let 𝑥 = 𝑡1 in 𝑡2 : 𝐴

Γ ⊢ 𝑡 : 𝜏
Γ ⊢ Λ𝛼.𝑡 : Π𝛼.𝜏

if 𝛼 ∉ Ftv(Γ) Γ ⊢ 𝑡 : Π𝛼.𝜏
Γ ⊢ 𝑡@𝐴 : 𝜏[𝐴/𝛼]

The first typing rule is for variables. Notice once again that variables can be
typed with a poly-type and therefore the context should accommodate that.
Additionally the polytype itself has to be well-typed in the context Θ.

We now justify some choices behind the type system.
First notice the variable rule which says that variables’ types can be open.

The first example that justifies this is the polymorphic identity function which
is typed as follows:

𝑥 : 𝛼 ⊢ 𝑥 : 𝛼
⊢ 𝜆𝑥.𝑥 : 𝛼→ 𝛼

⊢ 𝜆𝑥.𝑥 : Π𝛼.𝛼→ 𝛼

Γ ⊢ 𝑖𝑑 : Π𝛼.𝛼→ 𝛼

Γ ⊢ 𝑖𝑑 : (𝛼→ 𝛼) → 𝛼→ 𝛼

Γ ⊢ 𝑖𝑑 : Π𝛼.𝛼→ 𝛼

Γ ⊢ 𝑖𝑑 : 𝛼→ 𝛼

Γ ⊢ 𝑖𝑑 𝑖𝑑 : 𝛼→ 𝛼

⊢ let 𝑖𝑑 = 𝜆𝑥.𝑥 in 𝑖𝑑 𝑖𝑑 : 𝛼→ 𝛼

4.2.2 Semantics

First of all we have to define the semantics of types. Since types can be open
with type variables a type needs to be a mapping from a type environment to
the set of types. A type environment is itself a map from the type variables to
their set. However, as there is no set of sets we have to define a set containing
only those sets are small. We call this set the universe of small sets and
we denoted byU. This set contains the singleton set and the set of natural
numbers and it is closed under exponentials. To do this we defineU0 =

{1, N} andU𝑛+1 = {𝑋𝑌 | 𝑋 ,𝑌 ∈ U𝑛} ∪U𝑛 then the universe of monotypes
is defined asU =

⋃
𝑛∈𝜔U𝑛. We denote byU𝑛 the 𝑛-fold product

U𝑛 Δ
= U × · · · ×U︸ ︷︷ ︸

𝑛 times

Now the interpretation of a monotype 𝐴 with free type variables Ftv(𝐴) is
a mapping ⟦𝐴⟧ : U |Ftv(𝐴) | → U where |Ftv(𝐴) | is the number of free
type variables in the monotype 𝐴. Thus given a semantic type environment
𝜄 ∈ U |Ftv(𝐴) | taking type variables to semantic monotypes we can define the

adjunctions 25

semantics of types by induction on the as follows:

⟦𝛼⟧ 𝜄 = 𝜄(𝛼)
⟦unit⟧ 𝜄 = 1

⟦nat⟧ 𝜄 = N

⟦𝐴 × 𝐵⟧ 𝜄 = ⟦𝐴⟧ 𝜄 × ⟦𝐵⟧ 𝜄
⟦𝐴→ 𝐵⟧ 𝜄 = ⟦𝐵⟧ 𝜄⟦𝐴⟧𝜄

The semantics of polytypes are interpreted in a bigger universe such that
U is contained in it. The category of sets would do as opposed to the Von
Neumann universe used in Gunter’s book 7. We denote the inclusion functor 7 C.A. Gunter. Semantics of Programming

Languages: Structures and Techniques.
Foundations of computing. MIT Press, 1992

by 𝐽 : U ↩→ Set. Now for a polytype 𝜏 as a map ⟦𝜏⟧ : U |Ftv(𝜏) | →
Set. Specifically, we interpret the universal quantifier as the limit over the
monotypes inU. This is a Π-type since the universeU is a set with no
arrows and therefore can be regarded as a discrete category as we have shown
in Section 3.

⟦Π𝛼.𝜏⟧ 𝜄 = Π𝑋∈U⟦𝜏⟧ 𝜄[𝛼 ↦→𝑋]

Recall that the Π-type is right adjoint to the diagonal functor, in this instance
the base category is SetU𝑛 with 𝑛 + 1 being the free type variables in 𝜏.

SetU𝑛U SetU𝑛

Π

Δ

⊣

Notice that ⟦𝜏⟧ lives in the category SetU𝑛U which is the same as the cate-
gory SetU𝑛+1 of semantic types on 𝑛 + 1 variables.

The isomorphism induced by the adjunction is therefore as follows:

⌊·⌋ : SetU
𝑛+1 (ΔΓ, 𝜏) � SetU

𝑛 (Γ,Π𝜏) : ⌈·⌉ (4.6)

Notice that the homset in the category SetU𝑛 is the set of natural transfor-
mations between functors of typeU𝑛 → Set.

We now have to define the semantics of a context for term variables Γ ≡
𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛. Assume 𝑚 is the number of free type variables in Γ.
Then ⟦Γ⟧ is a object in SetU𝑚 :

⟦Γ⟧ = ⟦𝑇1⟧ × · · · × ⟦𝑇𝑛⟧

where the product is the defined point-wise as (𝑋 ×𝑌) (𝜄) = 𝑋 𝜄 ×𝑌𝜄 for a type
environment 𝜄 ∈ U𝑚.

The interpretation of well-typed terms Γ ⊢ 𝑡 : 𝜏 is an arrow ⟦Γ ⊢ 𝑡 : 𝜏⟧ :

⟦Γ⟧
⟦𝑡⟧
−−→ ⟦𝜏⟧ in SetU𝑛 whereas a well-typed term Γ ⊢ 𝑡 : 𝐴 is an arrow

⟦Γ ⊢ 𝑡 : 𝐴⟧ : ⟦Γ⟧
⟦𝑡⟧
−−→ ⟦𝐴⟧. The interpretation is then given by induction on

26 category theory course notes

the typing judgment:

⟦Γ ⊢ () : unit⟧ = !

⟦Γ ⊢ 𝑛 : nat⟧ = 𝑛

⟦Γ ⊢ 𝑥 : 𝐴⟧ = 𝜋𝑥

⟦Γ ⊢ prj1 (𝑡) : 𝐴⟧ = 𝜋1 ◦ ⟦𝑡⟧
⟦Γ ⊢ prj2 (𝑡) : 𝐵⟧ = 𝜋2 ◦ ⟦𝑡⟧

⟦Γ ⊢ (𝑡1, 𝑡2) : 𝐴 × 𝐵⟧ = ⟨⟦𝑡1⟧, ⟦𝑡2⟧⟩
⟦Γ ⊢ 𝜆𝑥.𝑡 : 𝐴→ 𝐵⟧ = Λ⟦𝑡⟧

⟦Γ ⊢ 𝑡1𝑡2 : 𝐵⟧ = 𝜖 ◦ ⟨⟦𝑀⟧, ⟦𝑁⟧⟩
⟦Γ ⊢ let 𝑥 = 𝑡1 in 𝑡2 : 𝐴⟧ = ⟦𝑡2⟧ ◦ ⟨𝑖𝑑Γ, ⟦𝑡1⟧⟩

⟦Γ ⊢ Λ𝛼.𝑡 : ∀𝛼.𝜏⟧ = ⌊⟦𝑡⟧⌋
⟦Γ ⊢ 𝑡@𝐴 : 𝜏[𝐴/𝛼]⟧ = 𝜋𝐴 ◦ ⟦𝑡⟧

Most of the terms are interpreted as in Section 1.6. Assuming a map ⟦𝑡⟧ :
Δ⟦Γ⟧ → ⟦𝜏⟧ in SetU𝑛+1

𝛼 ∉ Ftv(Γ) the interpretation of the introduction
rule of the ∀ quantifier is given by the adjunction (4.6) defined above which is
an arrow of type

⟦Γ⟧ 𝜄 → Π𝑋∈U⟦𝜏⟧ 𝜄[𝛼 ↦→𝑋]

for 𝜄 ∈ U𝑛.

5
Monads

In this chapter we are going to take a closer look at computational effects
and how they can be interpreted into a category. To do this need the notion
of monad. Here we assume the reader has at least heard of what a monad
is from functional programming. Monads in category theory are the same
concept, but originally they have been given a different definition.

Definition 5.0.1 (Monad). For a category C, a monad is an endofunctor
𝑇 : C → C such that there exists two natural transformations 𝜂 : 𝐼𝑑

·−→ 𝑇 and
𝜇 : 𝑇𝑇

·−→ 𝑇 such that the following diagrams hold:

𝑇 𝑇2 𝑇 𝑇3 𝑇2

𝑇 𝑇2 𝑇

𝑇𝜂𝜂𝑇

𝑖𝑑𝑇 𝑖𝑑𝑇

𝜇𝑇 𝑇𝜇

𝜇

𝜇𝑇

𝜇

Example 5.0.1 (List Monad). The list type 𝑇𝑋 = 1 + 𝐴 × 𝑇𝑋 is a monad
with 𝜂𝑋 : 𝑋 → 𝑇𝑋 being the map constructing a singleton list and the
multiplication 𝜇𝑋 : 𝑇𝑇𝑋 → 𝑋 given by concatenation applied to lists of lists.

Example 5.0.2 (State Monad). Assume a set of state 𝑆 and let 𝑇 : Set → Set
be the state monad 𝑇𝑋 = 𝑆 → 𝑋 × 𝑆, that is the monad of computations that
take a state 𝜎 ∈ 𝑆 and returns an output in 𝐴 along with the modified state.
The unit of the monad is given be 𝑎 ↦→ 𝜆𝜎.⟨𝑎,𝜎⟩ and the multiplication is
given by

𝑐 ↦→ 𝜆𝜎.𝑐′ (𝜎′) where (𝑐′,𝜎′) = 𝑐(𝜎)

For the reader more familiar with functional programming, the multiplica-
tion gives raise to the bind operation »=𝐴 : 𝑇𝐴 → (𝐴 → 𝑇𝐵) → 𝑇𝐵 defined
by 𝜇𝐴 ◦𝑇 (𝑓).

5.0.1 Adjunctions determine Monads

Given a pair of adjoint functors 𝐿 ⊢ 𝑅 we can construct both a monad, given
by 𝑅𝐿 and a comonad, given by 𝐿𝑅. The unit of the monad and the counit of

28 category theory course notes

the comonad are defined as follows

𝜂𝐴 = ⌊𝑖𝑑𝐿𝐴⌋
𝜂𝐵 = ⌈𝑖𝑑𝑅𝐵⌉

The join or multiplication of the monad 𝜇 : 𝑅𝐿𝑅𝐿 → 𝑅𝐿 is defined as
𝜇 = 𝑅𝜖𝐿 and the cojoin or comultiplication 𝛿 : 𝐿𝑅 → 𝐿𝑅𝐿𝑅 is defined as
𝛿 = 𝐿𝜂𝑅. The operations of the comonad are dually defined.

5.1 The Kleisli Category

The Kleisli category is the category of arrows that produce an effect 𝑇 .

Definition 5.1.1 (Klesli Category). For a category C and a monad (𝑇 , 𝜂, 𝜇)
the Kleisli category, denoted by C𝑇 , is the category where objects are the
objects in C and arrows 𝑓 : 𝐴→ 𝐵 are arrows 𝑓𝑇 : 𝐴→ 𝑇𝐵 in C.

We would like to stress that when we speak about arrows 𝑓 : 𝐴→ 𝐵 in the
Kleisli category C𝑇 we mean arrows 𝑓𝑇 : 𝐴 → 𝑇𝐵 in C. We have to prove
that C𝑇 is a category. This is easy to check as for every object 𝐴 we have and
identity arrow 𝑖𝑑𝐴 : 𝐴 → 𝐴 given by the unit of the monad 𝜂𝐴 : 𝐴 → 𝑇𝐴

and for arrows 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐶 in C𝑇 we can construct the
composite 𝑔 ◦ 𝑓 : 𝐴 → 𝐶 using the functorial action of the monad 𝑇 (𝑔) and
the multiplication of the monad 𝜇𝐶 :

𝐴 𝑇𝐵 𝑇2𝐶 𝑇𝐶
𝑓 𝑇 (𝑔) 𝜇𝐶

(𝑔◦ 𝑓)𝑇

5.2 The Computational 𝜆-calculus

The computational 𝜆-calculus which we denote by 𝜆𝐶 is a calculus with
effects first devised by Eugenio Moggi 1 who was the first to discover the 1 Eugenio Moggi. Notions of computation

and monads. Inf. Comput., 93(1):55–92,
1991

connection between computational effects and monads.
In this section we define the computational 𝜆-calculus and we give it an

interpretation in the Kleisli category C𝑇 for a (strong) monad 𝑇 .

5.2.1 Syntax

We first define the syntax of 𝜆𝐶 by defining the set of types, the terms and
the typing system as usual. To demonstrate the utility of monads we are only
going to need basic types and function spaces:

𝐴, 𝐵 ∈ Types ::= unit (unit type)
| 𝐴→ 𝐵 (functions)

while the set of 𝜆-terms Terms is inductively defined as follows

monads 29

𝑡 ∈ Terms ::= 𝑥 (terms variables)
| bang (effects)
| 𝜆𝑥.𝑡 | 𝑡1𝑡2 (functions)

where bang is a program producing an effect. The typing judgement relation
⊢ inductively as follows

(𝑥 : 𝐴) ∈ Γ
Γ ⊢ 𝑥 : 𝐴 Γ ⊢ bang : unit

Γ ⊢ 𝑡1 : 𝐴→ 𝐵 Γ ⊢ 𝑡2 : 𝐴
Γ ⊢ 𝑡1𝑡2 : 𝐵

Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ 𝜆𝑥.𝑡 : 𝐴→ 𝐵

Note that the program bang returns nothing so we type it with the type unit.

5.2.2 Semantics

We interpret the context Γ as usual:

⟦𝑥1 : 𝐴1, · · · , 𝑥𝑛 : 𝐴𝑛⟧ = ⟦𝐴1⟧ × · · · × ⟦𝐴𝑛⟧

The interpretation of types is then a function ⟦⟧ : Types → Obj(C𝑇). Notice
that Obj(C𝑇) is exactly Obj(C).

⟦unit⟧ = 1

⟦𝐴→ 𝐵⟧ = 𝑇⟦𝐵⟧⟦𝐴⟧

The placement of which types can produce an effect is crucial. When dealing
with effects it is customary to prefer a call-by-value semantics to avoid that
effectul computation passed onto functions as inputs could be executed more
than once to the nature of call-by-name.

Because in call-by-value effects are computed before the 𝛽-reduction rule
applies there is no need for input values to be computations, they are actually
normalised values. However, once an input value is applied to a function, this
can produce an effect.

We now interpret the terms of the language by induction on the typing
judgment. For a well-typed term Γ ⊢ 𝑡 : 𝐴 we give an arrow ⟦𝑡⟧ of type
⟦Γ⟧ → ⟦𝐴⟧ in C𝑇 as usual, but here the reader should keep in mind that this
is really a map of type ⟦Γ⟧ → 𝑇⟦𝐴⟧ in C

⟦Γ ⊢ () : unit⟧ =!

⟦Γ ⊢ bang : unit⟧ = 𝑏

⟦Γ ⊢ 𝑥 : 𝐴⟧ = 𝜂⟦𝐴⟧ ◦ 𝜋𝑥

⟦Γ ⊢ 𝜆𝑥.𝑡 : 𝐴→ 𝐵⟧ = 𝜂𝑇⟦𝐴⟧⟦𝐵⟧ ◦Λ⟦𝑡⟧

⟦Γ ⊢ 𝑡1𝑡2 : 𝐵⟧ = app(⟦𝑡1⟧, ⟦𝑡2⟧)

In order to explain the interpretation we work in the category C so the ap-
plication of the monad 𝑇 is explicit. We also remove the semantic brackets

30 category theory course notes

for the sake of removing clutter. Now, for 𝜆-abstraction we work as follows.
Assume a map 𝑡 : Γ × 𝐴 → 𝑇𝐵. We have to define a map Γ → 𝑇 (𝑇𝐵𝐴). By
currying 𝑡 we obtain Λ𝑡 : Γ𝑇𝐵𝐴 and by post-composing this map with 𝜂𝑇𝐵𝐴

we obtain the type 𝑇 (𝑇𝐵𝐴).
Function application is more tricky in that this is the point where we need

the monad to be strong. For two maps 𝑡1 : Γ→ 𝑇 (𝑇𝐵𝐴) and 𝑡2 : Γ→ 𝑇𝐴 We
define the map 𝑎𝑝𝑝(𝑡1, 𝑡2) : Γ→ 𝑇𝐵 as follows:

Γ 𝑇𝐵

𝑇 (𝑇𝐵𝐴) ×𝑇𝐴 𝑇2𝐵

𝑇 (𝑇𝐵𝐴 ×𝑇𝐴) 𝑇 (𝑇 (𝑇𝐵𝐴 × 𝐴)) 𝑇3𝐵

app(𝑡1,𝑡2)
⟨𝑡1,𝑡2 ⟩

𝑠𝑡
𝑇𝐵𝐴,𝑇𝐴

𝜇𝐵

𝑇 (𝑠𝑡
𝑇𝐵𝐴,𝐴) 𝑇2 (𝜖)

𝜇𝑇𝐵

6
Bibliography

[1] Steve Awodey. Category Theory. Oxford University Press, Inc., USA,
2nd edition, 2010.

[2] Jean-Yves Girard. Interprétation fonctionelle et élimination des
coupures de l’arithmétique d’ordre supérieur. Thèse d’État, Univer-
sité Paris VII, 1972.

[3] C.A. Gunter. Semantics of Programming Languages: Structures and
Techniques. Foundations of computing. MIT Press, 1992.

[4] Saunders MacLane. Categories for the Working Mathematician.
Springer-Verlag, New York, 1971. Graduate Texts in Mathematics,
Vol. 5.

[5] Alfio Martini. Category theory and the simply-typed lambda-calculus.
1996.

[6] B. Milewski. Category Theory for Programmers. Blurb, Incorporated,
2018.

[7] Eugenio Moggi. Notions of computation and monads. Inf. Comput.,
93(1):55–92, 1991.

[8] Andrew M. Pitts. Polymorphism is set theoretic, constructively. In
David H. Pitt, Axel Poigné, and David E. Rydeheard, editors, Category
Theory and Computer Science, Edinburgh, UK, September 7-9, 1987,
Proceedings, volume 283 of Lecture Notes in Computer Science, pages
12–39. Springer, 1987.

[9] John C. Reynolds. Types, abstraction and parametric polymorphism. In
R. E. A. Mason, editor, Information Processing 83, Proceedings of the
IFIP 9th World Computer Congress, Paris, France, September 19-23,
1983, pages 513–523. North-Holland/IFIP, 1983.

[10] John C. Reynolds. Polymorphism is not set-theoretic. In Gilles Kahn,
David B. MacQueen, and Gordon D. Plotkin, editors, Semantics of Data

32 category theory course notes

Types, International Symposium, Sophia-Antipolis, France, June 27-29,
1984, Proceedings, volume 173 of Lecture Notes in Computer Science,
pages 145–156. Springer, 1984.

[11] Philip Wadler. Theorems for free! In Joseph E. Stoy, editor, Proceed-
ings of the fourth international conference on Functional program-
ming languages and computer architecture, FPCA 1989, London, UK,
September 11-13, 1989, pages 347–359. ACM, 1989.

	Introduction to Category Theory
	Elements of Set Theory
	Categories
	Initial and terminal objects
	Isomorphisms
	Cartesian Closed Categories
	Semantics of the Simply Typed -Calculus
	Opposite categories

	Functors and Natural Transformations
	The Homset Functor

	Limits and Colimits
	Algebraic Data Types as Limits and Colimits

	Adjunctions
	Instances of Adjunctions
	Semantics of Predicative Polymorphism

	Monads
	The Kleisli Category
	The Computational -calculus

	Bibliography

