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Abstract9

Generic programming with recursion schemes provides a powerful abstraction for structuring recursion10

while ensuring termination and providing reasoning about program equivalences as well as deriving11

optimisations which has been successfully applied to functional programming. Formalising recursion12

schemes in a type theory offers additional termination guarantees, but it often requires compromises13

affecting the resulting code, such as imposing performance penalties, requiring the assumption of14

additional axioms, or introducing unsafe casts into extracted code (e.g. Obj.magic in OCaml).15

This paper presents the first Coq formalisation to our knowledge of a recursion scheme, called16

the hylomorphism, along with its algebraic laws allowing for the mechanisation of all recognised17

(terminating) recursive algorithms. The key contribution of this paper is that this formalisation18

is fully axiom-free allowing for the extraction of safe, idiomatic OCaml code. We exemplify the19

framework by formalising a series of algorithms based on different recursive paradigms such as divide-20

and conquer, dynamic programming, and mutual recursion and demonstrate that the extracted21

OCaml code for the programs formalised in our framework is efficient, resembles code that a22

human programmer would write, and contains no occurrences of Obj.magic. We also present a23

machine-checked proof of the well-known short-cut fusion optimisation.24
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1 Introduction28

Recursive definitions cannot be proven well-defined automatically due to the halting problem.29

Modern proof assistants like Coq or Agda provide a sound, but incomplete algorithm30

which syntactically checks for termination or productivity. For recursion, this is done by31

automatically inferring which argument in the recursive call gets smaller with respects to32

the original input argument. For productivity, the algorithm checks that the corecursive33

call appears directly under a constructor to make sure that this function always produces34

at least one element after each recursive step. This implies that some functions, though35

well-defined, cannot be accepted by the proof assistant. Examples of this include common36

sorting algorithms, such as quicksort:37

let rec qsort xs = match divide xs with | None -> []
| Some (pivot, (smaller, larger)) -> qsort smaller @ (pivot::qsort larger)

While qsort is a well-defined mathematical function it cannot be accepted by a proof assistant.38

The reason is that the divide function destructuring the input dives deeper in the input39

returning two sublists with the head as a pivot.40

The main approach for implementing non-structural recursion in Coq is to use well-founded41

recursion, where recursive definitions are coupled with termination proofs. Using well-founded42
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recursion, the recursive calls will happen on structurally smaller termination proofs1. A43

benefit of this approach is that, extracting verified nonstructural recursive functions to44

OCaml will erase the termination proofs, and so produce code that will be closer to what45

a programmer may have written directly in OCaml. However, reasoning about program46

equivalences requires dealing with such termination proofs, and it is common practice to47

use custom reduction lemmas that will be used extensively when proving properties about48

nonstructural recursive functions.49

Structured recursion schemes have been successfully employed in functional programming50

to structure recursive programs, for example, quicksort and mergesort are both instances51

of a divide-and-conquer algorithm which in terms of recursion schemes can be can be52

formalised as an hylomorphism [22, 17]. Furthermore, it has been shown by Hinze et53

al. [16] that hylomorphisms provide the basic building block of every recursion scheme. In54

particular, any complex recursion scheme can be transmogrified down into an hylomorphisms55

by means of an adjunction. Furthermore, hylomorphism laws can capture a number of56

useful equivalences, ranging from common optimisations such as short-cut fusion [27], to57

semi-automatic parallelisations [12, 7].58

However, when used in the context of languages with general recursion like (e.g.) Haskell,59

recursion schemes cannot ensure termination, but while formalising recursion schemes in a60

type theory does provide stronger termination guarantees, to the best of our knowledge, not61

many attempts have been made at mechanising structured recursion schemes.62

Recently, Abreu et al. [3] encoded an algebraic approach to divide-and-conquer computa-63

tions in which termination is entirely enforced by the typing discipline. Their approach solves64

the problem of termination proofs as well as the performance of the code that is run within65

Coq, but it does not allow for extraction of idiomatic OCaml code. This is problematic since66

code extration has proven useful in a variety of scenarios [25, 21, 23, 26]. However, most uses67

of extraction (1) do not preserve the recursive structure of common implementations; and68

(2) lead to unsafe casts like Obj.magic in the generated code. This latter is also problematic69

in that, for higher-order programs, simple interoperations can lead to incorrect behaviour or70

even segfaults [11] and, moreover, it invalidates the fast-and-loose principle [10].71

This work presents the first Coq formalisation to our knowledge of hylomorphisms that (1)72

is axiom-free and (2) allows the extraction of idiomatic OCaml code. The full mechanisation73

can be found on Github2. While programmers still need to reason about the termination of74

their programs, our mechanisation will allow the use of the algebraic laws of hylomorphisms75

for program reasoning, as well as extracting to idiomatic code (see extracted qsort program76

in Section 4).77

To summarise, our contributions are as follows. In this paper we provide a framework for78

generic programming with recursion schemes in Coq, with a proof of their algebraic laws and79

program equivalences for clean code extraction:80

In Section 2 we formalise the type of container functors ensuring the presence of least81

and greatest fixed-points for functors and suitably adapted for program extraction82

In Section 3 we formalise folds, unfolds and hylomorhisms and their universal properties83

In Section 4 we use the framework to formalise examples of divide-and-conquer, dynamic84

programming, and mutual recursion algorithms. Furthermore we verify the short-cut85

fusion optimisation and show the extracted optimised code to OCaml.86

1 In Coq, one approach is using the Fix combinator, in which recursion is done on an accesibility predicate
on the input, which is a proof that there are no infinitely decreasing chains.

2 https://github.com/dcastrop/coq-hylomorphisms
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2 Mechanising Extractable Container Functors87

In order to abstract recursion patters we need to be able to abstract away from the particular88

shape of the data. This is achieved by introducing the concept of functors which have the89

suitable fixed-point properties, i.e. those who have a initial algebras. A common approach90

to construct such functors is to use containers [1] (Section 2.1). However, reasoning about91

container equality will require us to consider both functional extensionality and heterogeneous92

equality. We avoid these axioms by introducing a custom equivalence relation on types93

(Section 2.3).94

2.1 Functors and Containers95

Functors are functions F : Type -> Type which additionally have a map96

fmap : forall A B, (A -> B) -> F A -> F B

witnessing the idea that a functor represents a container for abstract data that can be manip-97

ulated without changing the outer structure. For example, the type List : Type -> Type is a98

functor and List A is the type of lists over elements of type A with the obvious fmap function99

recursively traversing a list and applying the function A -> B for each element. Additionally,100

the type of lists List A arises as the least fixed-point of the functor F X = unit + (A * X).101

In general not every functor has a fixed-point, and it is not possible to build the fixed-point102

of a functor such as F in Coq due to not being strictly positive. Due to this, we are going to103

restrict to polynomial functors as represented by containers. A container is defined by a type104

of shapes and a family of position types indexed by shapes.105

Context (Shape : Type) (Pos : Shape -> Type).

For the functor F we introduced in the previous paragraph we would define Shape as unit + A106

indicating there are two constructors in the data type and one of these contains a piece of107

data of type A. Moreover, we would define the positions as Pos (inl tt) = Empty_set and108

Pos (inr a) = unit indicating that the first constructor does not have any type variables109

and the second constructor has one type variable.110

At this point an extension of this container is a functor defined as follows:111

Record App (X : Type) := MkApp { shape : Shape; contents : Pos shape -> X }.

with the obvious action on morphisms given by post-composition with contents.112

Definition fmap (f : A -> B) (x : App C A) : App C B
:= {| shape := shape x; contents := fun e => f (contents x e) |}

In our running example, the type App X, for some X has two inhabitants. The first is a113

pair composed by inl tt : Shape and a function Pos (inl tt) -> X. This latter is in fact a114

function of type Empty_set -> X. This pair is, therefore isomorphic to the type unit, the type115

with only one inhabitant. The second inhabitant is the pair composed by inr a : Shape, for116

some a : A, and a function Pos (inr a) -> X. This latter type is equal to unit -> X which117

represents the elements of X and therefore is isomorphic to X. This particular pair of shapes118

and positions is therefore isomorphic to the type unit + A * X.119

The correspondence between containers and polynomial functors has been formalised in120

this work and can be found in the accompanying code (file Container.v).121

CVIT 2016
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2.2 Extractable Containers122

In the previous section we defined containers using dependent types. However, Ocaml’s123

type system is not equipped to handle these. To solve this problem Coq’s code extraction124

mechanism will insert unsafe casts.125

Consider instead representing the positions of a container using a decidable validity126

predicate (valid) which assigns shapes to positions. We use boolean functions and coercions127

from bool to Prop to represent decidable predicates, similarly to SSReflect [15]. The family128

of positions for a given shape in a container can be recovered by defining:129

Class Cont (Shape : Type) (APos : Type) := { valid : Shape -> APos -> bool }.
Record Pos `(C : Cont Shape APos) (shape : Shape) :=

ValidPos { val : APos; IsValid : valid shape pos }.

Coq’s code extraction will now be able to erase the validity predicate, and generate OCaml130

code that is free of unsafe casts. The OCaml code extracted for Pos will now be exactly the131

code extracted for APos. The decidability of the validity predicate is crucial for our purposes132

of remaining axiom-free. To illustrate this, suppose that we need to show the equality of two133

container extensions. We will need to show that, for the same positions, they will produce134

the same result. In Coq, the goal would look as follows:135

k : Pos C s -> X
P1, P2 : valid s p
---------------------------
k (ValidPos p P1) = k (ValidPos p P2)

If valid was a regular proposition in Prop, it would not possible to prove the equality of136

P1 and P2. However, by using a decidable predicate, if we know that P1 and P2 are of type137

valid s p = true, then we can prove without any axioms that P1 = P2 = eq_refl.138

2.2.1 Equality of Container Extensions139

Reasoning about the equality of container extensions is not entirely solved by using decidable140

validity predicates to define the families of positions. In general, we want to equate container141

extensions that have the same shape, and that, for equal shape and position, they return142

the same element. To avoid the use of the functional extensionality axiom, we capture this143

relation with the following inductive proposition in Coq:144

Inductive AppR `{F : Cont Sh P} {X} (x y : App F X) : Prop :=
| AppR_ext (Es : shape x = shape y)

(Ek : forall e1 e2, val e1 = val e2 -> cont x e1 = cont y e2).

Note that we do not care about the validity proof of the positions, only their value. This is145

to simplify (slightly) our proofs. This relation is trivially reflexive, transitive, and symmetric.146

However, the use of a different equality for container extensions now forces us to deal147

with the fact that some types have different definitions of equality. In particular, we want to148

reason about the equality of functions of types such as App F A -> B (or B -> App F A). Since149

these types now come with their own equivalence, any function that manipulates them needs150

to be respectful. I.e. given R : X -> X -> Prop and R' : Y -> Y -> Prop, we want functions151

(morphisms) that satisfy the following property:152

forall (x y : X), R x y -> R' (f x) (f y)
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2.3 Types and Morphisms153

We address the different forms of equality by defining a class of setoids, types with an154

associated equivalence relation, and considering only functions that respect the associated155

equivalences, or proper morphisms with respect to the function respectfulness relation. We156

use the type-class mechanism, instead of setoids in Coq’s standard library, to help Coq’s157

code extraction mechanism remove any occurence of custom equivalence relations in the158

extracted OCaml code. We use =e to denote the equivalence relation of a setoid. By default,159

we associate every Coq type with the standard propositional equality, unless a different160

equivalence is specified (we allow overlapping instances, and Coq’s propositional equality161

takes the lowest priority). Given types A and B, with their respective equivalence relations162

eA : A -> A -> Prop and eB : B -> B -> Prop, the we define the type A ~> B to represent163

proper morphisms of the respectfulness relation of R to R'.164

Structure morph A {eA : setoid A} B {eB : setoid B} :=
MkMorph { app :> A -> B; app_eq : forall x y, x =e y -> app x =e app y }.

Notation "A ~> B" := (@morph A _ B _).

We rely on Coq’s type class mechanism to fill in the necessary equivalence relations. Coq’s165

code extraction mechanism will erase any occurrence of Prop in the code, so objects of type166

A ~> B will be extracted to the OCaml equivalent to A -> B. Note the implicit coercion from167

A ~> B to A -> B. On top of this, we define basic function composition and identity functions:168

Notation "f \o g" = (comp f g).
Definition comp : (B ~> C) ~> (A ~> B) ~> A ~> C := ...
Definition id : A ~> A := ...

Using custom equivalences and proper morphisms, we redefine the definitions of container169

extensions and container equality. In particular, container extensions require a proper170

morphism to check the validity of positions in shapes, and container equality now uses171

equivalences of shapes and contained elements:172

Class Cont `{setoid Shape} (Pos : Type) := { valid : Shape * Pos ~> bool }.
Inductive AppR `{F : Cont Sf Pf} `{setoid X} (x y : App F X) : Prop :=

| AppR_ext (Es : shape x =e shape y)
(Ek : forall e1 e2, val e1 = val e2 -> cont x e1 =e cont y e2).

Note the use of =e instead of Coq’s standard equality. For positions, however, we chose to173

use Coq’s propositional equality, since these would leads to simpler code. We explain why in174

Section 3.1, and the mechanisation of initial algebras of container extensions.175

This definition leads to the well-known “setoid hell”, which we mitigate by providing176

tactics and notations to automatically discharge proofs of app_eq for morphisms, whenever177

the types use the standard propositional equality, or a combination of propositional and178

extensional equality. However, our compositional approach allows us to build morphisms by179

plugging in other morphisms to our combinators. In our framework, our expectation is that180

the user-provided functions remain small, with relatively straightforward proofs of app_eq.181

However, by using this mechanisation, we gain simplified proofs via the use of Coq’s182

Generalised Rewriting. Since every morphism f : A ~> B satisfies the property that if x =e y,183

then f x =e f y, we can add every morphism as a proper element of Coq’s respectfulness184

relation. In practice, this means that we can use the rewrite tactic on proofs of type A =e B,185

for arbitrary A and B, whenever they are used as arguments of morphisms, as well as Coq’s186

reflexivity, symmmetry, and transitivity tactics. For example:187

CVIT 2016
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Goal forall `(f : A ~> B) `(g : B ~> C) `(h : C ~> D) (H : h \o g =e id),
h \o (g \o f) =e f.

Proof. rewrite compA, H. reflexivity. Qed.

2.3.1 Polynomial Types188

We define a number of equivalences for polynomial types.189

Instance ext_eq (A : Type) `{eq_B : setoid B} : setoid (A -> B).
Instance pair_eq `{eq_A : setoid A} `{eq_B : setoid B} : setoid (A * B).
Instance sum_eq `{eq_A : setoid A} `{eq_B : setoid B} : setoid (A + B).
Instance prop_eq : setoid Prop.
Instance pred_sub `{eA : setoid A} {P : A -> Prop} : setoid {a : A | P a}.

Most of the definitions that involve functions and polynomial types are straightworward.190

Identity and composition are defined as fun x => x and fun f g x => f (g x) respectively,191

and the proofs that they are proper morphisms is straightforward, and automatically dis-192

charged by Coq. Products are built using function fun f g x => (f x, g x), with the193

projections being the standard Coq fst and snd functions. Similarly, sum injections are194

encoded using Coq’s inl and inr constructors, and pattern matching on them uses the195

function fun f g x => match x with | inl y => f y | inr y => g y end. The proofs that196

these morphisms are proper are straightforward. Finally, we also provide functions for197

currying/uncurrying, and flipping the arguments of a proper morphism. We force most of198

our definitions to be inlined, to help Coq’s code extraction mechanism to inline as many of199

these combinators as possible.200

We prove the isomorphisms of polynomial types and the equivalent container extensions.201

As an example, we discuss (informally) the isomorphisms of pairs with their equivalent202

container extensions. Suppose that we know that App F X is isomorphic to A, and App G X203

is isomorphic to B. Then we can show that App (Prod F G) X is isomorphic to A * B. If we204

have an element of type App (Prod F G) X, using the inl position, we can obtain App F X.205

Similarly, using inr, we can obtain App G X. Since these are the only two valid positions in206

the shape of pairs, we have finished. It is now sufficient to use the isomorphisms of App F X207

and App G X to obtain A * B. Similarly if we have A * B, we can first use the isomorphisms of208

A and B to obtain App F X * App G X, and then construct the necessary container extension.209

Given p_inl : Pos l -> Pos (l * r) (resp. p_inr) that act as inl (resp. inr) on product210

positions, and case_pos : (Pos l -> X) -> (Pos r -> X) -> Pos (l * r) -> X that pattern211

matches on the product positions, the functions that witness the isomorphism are:212

Definition iso_pair (x : App (Prod F G) X) : App F X * App G X :=
({| shape := shape (fst x); cont := fun e => cont x (p_inl e) |},
{| shape := shape (snd x); cont := fun e => cont x (p_inr e) |}).

Definition iso_prod (x : App F X * App G X) : App (Prod F G) X :=
{| shape := (shape (fst x), shape (snd x));

cont := case_pos (cont (fst x)) (cont (snd x)) |}.

Proving that the composition of these functions is the identity is straightforward using the213

fact that Prod containers only have two valid positions.214

3 Formalising Recursion Schemes215

Recursion schemes provide an abstract way to consume and generate data. We now proceed216

onto describing how to formalise hylomorphisms in Coq. We first formalise algebras for217
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container extensions (Section 3.1), then we formalise coalgebras (Section 3.2) and then we218

put together these notions to formalise recursive coalgebras and hylomorphisms (Section 3.3).219

3.1 Algebras and Catamorphisms220

An algebra is a set A (the carrier of the algebra) together with some operations on it sometimes221

subject to some equational laws. For example, given such a type A we can define the monoid222

operations as u : unit -> A for unit and m : A * A -> A for multiplication. Notice that223

F X = unit + X * X is a functor on X which means we can equivalently describe these two224

maps as a single one of type F X -> X which we call the algebra for the functor F satisfying225

the unit and associative laws of the monoid. In this work we will be using algebras to describe226

the operations of a data type and so we will not be needing additional equations on these227

operations.228

Given a type A and a functor F, an F-algebra is a pair given by a type A called the carrier229

of a structure map of type App F A ~> A:230

Notation Alg F A := (App F A ~> A).

The least fixed-point for a functor F is an instance of an F-algebra where the structure map231

is an isomorphism. This is sometimes referred to as the initial algebra for a functor F. We232

will explain the reason behind this name shortly. 1 We define the least fixed-point of F as an233

inductive type:234

Inductive LFix `(F : Cont Sh P) : Type := LFix_in { LFix_out : App F (LFix F) }.

where LFix_in is the F-algebra while LFix_out is its inverse. As an example, the initial F-235

algebra for the functor F X = unit + A * X is the type of lists with the F-algebra being defined236

by the empty list Empty : unit -> LFix F and the cons operation Cons : A * LFix F -> LFix F.237

We define LFix as a setoid, where its equivalence relation can be described as the least238

fixed point of AppR and we define smart constructors for the isomorphism of least fixed points239

as respectful morphisms:240

l_in : App F (LFix F) ~> LFix F l_out : LFix F ~> App F (LFix F)

The least fixed-point for F is the initial F-algebra in the sense that it gives rise to an241

inductive recursion scheme. Specifically, for any other F-algebra there exists a unique map,242

known as a fold or catamorphism, such that it structurally deconstructs the data type using243

LFix_out, calls itself recursively and then composes the result of the recursive call using the244

given an F-algebra. In other words, for any give F-algebra there exists a unique F-algebra245

homomorphism from the initial one. We define it in Coq as follows:246

Definition cata_f `{F : Cont Sh P} (alg : Alg F A) : LFix -> A
:= fix f (x : LFix) := match x with

| LFix_in ax => let (sx, kx) := ax in alg (MkApp sx (fun e => f (kx e))) end.

It is easy to show that this function is a respectful morphism of F-algebras. In fact, it is247

possible to define it as a map of the following type:248

cata : forall `{F : Cont Sh P} `{setoid A}, Alg F A ~> LFix ~> A

We prove that catamorphisms satisfy the universality property we explained previously:249

1 To be more precise, initial algebras are isomorphisms by Lambek’s lemma, but isomorphisms of functors
do not necessarily correspond to initial algebras.

CVIT 2016
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Lemma cata_univ `{eA : setoid A} (alg : Alg F A) (f : LFix ~> A)
: f =e cata alg <-> f =e alg \o fmap f \o l_out.

In other words, if there is any other f with the same structural recursive shape as the250

catamorphism on the algebra alg then it must be equal to that catamorphism.251

3.2 Coalgebras and Anamorphisms252

Algebras and catamorphisms dualise nicely to the coinductive setting. The dual of an algebra253

is a coalgebra. A coalgebra can be thought of as an observation map. For example, for a254

type of states X and an alphabet type L we can define a labelled transition system (LTS)255

on X as a function c : X -> FX for a functor F X = L * X implementing the transition map.256

In particular, for a state x1 : X, c x1 returns a pair (l, x2) : L * X where l : L is the257

observable action and x2 : X is the next state.258

In general, for a functor F, an F-coalgebra is a pair of a type X called the carrier of the259

coalgebra and a structure map X -> F X.260

In our development we use the following notation for coalgebras:261

Notation Coalg F A := (A ~> App F A).

Dually to the initial F-algebra, a final F-coalgebra is the greatest fixed-point for a functor262

F. We define it using a coinductive data type:263

CoInductive GFix `(F : Cont Sh Po) : Type := GFix_in { GFix_out : App F GFix }.

where GFix_out is the final F-coalgebra and GFix_in is its inverse witnessing the isomorphism.264

Similarly to LFix, GFix is also defined as a setoid, with an equivalence relation that is the265

greatest fixpoint of AppR. Additionally, we define smart constructors for the isomorphism of266

greatest fixed points267

g_in : App F (GFix F) ~> GFix F g_out : GFix F ~> App F (GFix F)

The greatest fixed-point is a terminal F-coalgebra in the sense that it yields a coinductive268

recursion scheme. Specifically, for any other F-coalgebra there exists a unique map, called269

the unfold or anamorphism, such that it applies the observation map, corecursively generates270

the rest of the computation and composes the result of the corecursive call by using the271

algebra GFix_in. In other words, for any given F-coalgebra there exists a unique F-coalgebra272

homomorphism into the terminal F-coalgebra.273

We define anamorphisms as follows:274

Definition ana_f_ (c : Coalg F A) :=
cofix f x :=

match c x with | MkApp sx kx => GFix_in (MkApp sx (fun e => f (kx e))) end.

Definition ana : forall `{setoid A}, Coalg F A ~> A ~> GFix F := (*... ana_f_ ... *)

From this definition the universality property falls out:275

Lemma ana_univ `{eA : setoid A} (h : Coalg F A) (f : A ~> GFix F)
: f =e ana h <-> f =e g_in \o fmap f \o h.

In words, for any F-coalgebra, if there is any other function f that is a F-coalgebra homo-276

morphism then it must be the anamorphism on the same coalgebra.277
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3.3 Recursive Coalgebras and Hylomorphism278

Hylomorphisms capture the concept of divide-and-conquer algorithms where the input is279

first destructured (divide) in smaller parts by means of a coalgebra which are computed280

recursively and then composed back together (conquer) by means of an algebra.281

In general given an F -algebra and F -coalgebra, the hylomorphism is the unique solution282

(when it exists) to the equation283

f = a ◦ F f ◦ c (1)284

As we stated earlier, a solution to this equation does not exist for an arbitrary algebra and285

coalgebra pair and, in fact, this definition cannot be accepted by Coq.286

In order to find a solution we restrict ourselves to the so-called recursive coalgebras [4, 6].287

An example of a recursive coalgebra is the partition function in quicksort which destructures288

a list into a pivot and two sublist and as long as the sublists are smaller the partitioning289

function still yields a unique solution to the recursion scheme.290

We mechanise recursive hylomorphisms which are guaranteed to have a unique solution to291

the hylomorphism equation. These are hylomoprhisms where the coalgebra is recursive, i.e.292

coalgebras that terminate on all inputs. The following predicate captures that a coalgebra293

terminates on an input:294

Inductive RecF (h : Coalg F A) : A -> Prop :=
| RecF_fold x : (forall e, RecF h (cont (h x) e)) -> RecF h x.

A recursive coalgebra of type RCoalg F A is a coalgebra c such that forall x, RecF c x.295

Recursive hylomorphisms are implemented in Coq recursively on the structure of the proof296

for the type (RecF) as follows:297

Definition hylo_def (a : Alg F B) (c : Coalg F A)
: forall (x : A), RecF c x -> B := fix f x H
:= match c x as h0 return (forall e : Pos (shape h0), RecF c (cont h0 e)) -> B

with | MkApp s_x c_x => fun H => a (MkApp s_x (fun e => f (c_x e) (H e)))
end (RecF_inv H).

We use RecF_inv to obtain the structurally smaller proof to use in the recursive calls. As we298

did with catamorphisms and anamorphisms, we prove that hylo_def is respectful, and use299

this proof to build the corresponding higher-order proper morphism:300

hylo : forall `{F : Cont Sh P} `{setoid A} `{setoid B},
Alg F B ~> RCoalg F A ~> A ~> B

Finally, we show that recursive hylomorphisms are the unique solution to the hylomorphism301

equation.302

Lemma hylo_univ (g : Alg F B) (h : RCoalg F A) (f : A ~> B)
: f =e hylo g h <-> f =e g \o fmap f \o h.

Hylomorphisms fusion falls out from the universal property:303

Lemma hylo_fusion_l (h1 : RCoalg F A) (g1 : Alg F B) (g2 : Alg F C)
(f2 : B ~> C) (E2 : f2 \o g1 =e g2 \o fmap f2) : f2 \o hylo g1 h1 =e hylo g2 h1.

Using the hylo fusion law, we can prove the well-known deforestation optimisation. This is304

when two consecutive recursive computations, one that builds a data structure, and another305

one that consumes it, can be fused together into a single recursive definition. This, in turn,306

allows us to prove that a recursive hylomorphism is the composition of a catamorphism and307

a recursive anamorphism.308
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Lemma deforest (h1 : RCoalg F A) (g2 : Alg F C)
(g1 : Alg F B) (h2 : RCoalg F B) (INV: h2 \o g1 =e id)
: hylo g2 h2 \o hylo g1 h1 =e hylo g2 h1.

3.3.1 On the subtype of finite elements309

In this development we have defined recursive anamorphisms on inductive data types. We310

might have as well defined them on the subtype of finite elements of coinductive data types311

using a predicate which states when an element of a coinductive data type is finite:312

Inductive FinF : GFix F -> Prop :=
| FinF_fold (x : GFix F) : (forall e, FinF (cont (g_out x) e)) -> FinF x.

Now the subtype {x : GFix F | FinF x} of finite elements for GFix F is isomorphic its313

corresponding the inductive data type LFix F. This is easy to see. We first define a314

catamorphism ccata_f_ from the subtype {x : GFix F | FinF x} of finitary elements of315

GFix F to any F-algebra.316

Definition ccata_f_ `{eA : setoid A} (g : Alg F A)
: forall x : GFix F, FinF x -> A := fix f x H :=

let hx := g_out x in
g (MkCont (shape hx) (fun e => f (cont hx e) (FinF_inv H e))).

We now prove this is isomorphic to the least fixed-point of the functor F. We take the317

catamorphism from the finite elements of GFix F to the inductive data type LFix F using318

the F-algebra l_in. Its inverse is the catamorphism on the restriction of g_in to the finite319

elements of GFix, which we denote by lg_in. The following lemmas prove the isomorphism:320

Lemma cata_ccata `{setoid A} : cata lg_in \o ccata l_in =e id.
Lemma ccata_cata `{setoid A} : ccata l_in \o cata lg_in =e id.

The finite subtype of GFix F allows us to compose catamorphisms and anamorphisms, by321

using the above isomorphism. In our work, however, we use recursive anamorphisms, defined322

as hylo l_in c for a recursive coalgebra c, which compose easily with catamorphisms.323

4 Extraction324

We go in this section through a series of case studies of various recursive algorithms. We show325

how they can be encoded in our framework, how can we do program calculation techniques326

for optimisation, and how can they be extracted to idiomatic OCaml code. Our examples327

are the Quicksort and Mergesort algorithms (Section 4.1), dynammic programming and328

Knapsack (Section 4.2), and examples of the shortcut deforestation optimisation in our329

framework (Section 4.3).330

4.1 Sorting Algorithms331

Our first case study is divide-and-conquer sorting algorithms. Encoding them in our frame-332

work will require the use of recursive hylomorphisms and termination proofs. We complete333

the sorting algorithm examples by applying fusion optimisation.334

Both mergesort and quicksort are divide-and-conquer algorithms that can be captured by335

the structure of an hylomorphisms. The structure of the recursion is that of a binary tree.336

For example, in the case of quicksort, a list is split into a pivot, the label of the node, and337

two sublists. We define the data functor of trees as follows:338
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Inductive ITreeF L N X := i_leaf (l : L) | i_node (n : N) (l r : X)

We define the functor as a container using the following shapes and positions:339

Inductive Tshape L A := | Leaf (ELEM : L) | Node (ELEM : A).
Inductive Tpos := | Lbranch | Rbranch.

These define a container, TreeF, in a straightforward way, by making the positions of type340

Tpos only valid in Node. We define a series of definitions for tree container constructors and341

destructors:342

Definition a_out {L A X : Type} : App (TreeF L A) X ~> ITreeF L A X.
Notation a_leaf x := (MkCont (Leaf _ x) (@dom_leaf _ _ _ x)).
Notation a_node x l r := (MkCont (Node _ x)

(fun p => match val p with | Lbranch => l | Rbranch => r end)).

The container for the Quicksort hylomorphism is TreeF unit int, with the following algebra343

and coalgebra.344

Definition merge : App (TreeF unit int) (list int) ~> list int.
|{ x : (App (TreeF unit int) (list int)) ~> (

match x with
| MkCont sx kx =>

match sx return (Container.Pos sx -> _) -> _ with
| Leaf _ _ => fun _ => nil
| Node _ h => fun k => List.app (k (posL h)) (h :: k (posR h))
end kx

end
)}|.

Defined.

Definition c_split : Coalg (TreeF unit int) (list int).
|{ x ~> match x with

| nil => a_leaf tt
| cons h t => let (l, r) := List.partition (fun x => x <=? h) t in

a_node h l r
end}|.

Defined.

We prove that the coalgebra c_split is recursive by showing that it respects the “less-than”345

relation on the length of the lists. The code that we extract for hylo merge c_split is the346

following:347

let rec qsort = function
| [] -> [] | h :: t ->

let (l, r) = partition (fun x0 -> leb x0 h) t in
let x0 = fun e -> qsort (match e with | Lbranch -> l | Rbranch -> r) in
app (x0 Lbranch) (h :: (x0 Rbranch))

Note that Coq’s code extraction is unable to inline x0, but the resulting code is similar to a348

hand-written qsort. The mergesort algorithm can be defined analogously and can be found349

in the formalisation3.350

3 https://github.com/dcastrop/coq-hylomorphisms
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4.1.1 Fusing a divide-and-conquer computation351

As an example of how can we use program calculation techniques in our framework, we show352

how another traversal can be fused into the divide-and-conquer algorithm using the laws of353

hylomorphisms. Suppose that we map a function to the result of sorting the list. We can use354

our framework to fuse both computations. In particular, consider the following definition:355

Definition qsort_times_two := Lmap times_two \o hylo merge tsplit.

Here, Lmap times_two is a list map function defined as a hylomorphism, and times_two356

multiplies every element of the list by two. We can use Coq’s generalised rewriting, and357

hylo_fusion_l to fuse times_two into the RHS hylomorphism in qsort_times_two. After358

applying hylo fusion and the necessary rewrites, the hylomorphism that we extract is359

hylo (merge \o natural times_two) tsplit. In this definition, natural defines a natural360

transformation by applying times_two to the shapes, and times_two multiplies every pivot361

in the Quicksort tree by two. Our formalisation contains a proof that natural is indeed a362

natural transformation, which relies on the fact that it preserves the structure of the shapes363

and, therefore, the validity of the positions. The extracted OCaml code is a single recursive364

traversal:365

let rec qsort_times_two = function | [] -> []
| h :: t -> let (l, r) = partition (fun x0 -> leb x0 h) t in

let x0 = fun p -> qsort_times_two (match p with
| Lbranch -> l | Rbranch -> r) in

app (x0 Lbranch) ((mul (Uint63.of_int (2)) h) :: (x0 Rbranch))

4.2 Knapsack366

We focus now on the formalisation and extraction of dynamorphisms for dynamic program-367

ming, by using their encoding as a hylomorphism. We use the knapsack example from [16].368

Dynamorphisms build a memoisation table that stores intermediate results, alongside the cur-369

rent computation. The algebra used to define a dynamorphism can access this memoisation370

table to speed up computation. First, we define memoisation tables in terms of containers.371

Definition MemoShape : Type := A * Sg.
Definition MemoPos := Pg.
Instance Memo : Cont MemoShape MemoPos := { valid := valid \o pair (snd \o fst) snd }.

Definition Table := LFix Memo.

Memoisation tables are the least fixed point of the container defined by shapes A * Sg and372

positions Pg, given a a container G : Cont Sg Pg. We define a function to insert elements373

into the memo tables:374

Definition Cons : A * App G Table ~> App Memo Table := (* *)

And two functions to inspect the head of a memo table, and remove an element from it:375

Definition headT : Table ~> A := (* *)
Definition tailT : Table ~> App G Table := (* *)

These tables map “paths” in the least fixed point of Memo to elements of type A. For example,376

if G is a list-generating functor, these paths will be natural numbers. Using these definitions,377

a dynamorphism is defined as follows:378
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Definition dyna (a : App G Table ~> A) (c : RCoalg G B) : B ~> A
:= headT \o hylo (l_in \o Cons \o pair a id) c.

Note how, instead of an algebra App G A ~> A, the algebra takes a memo table. The definition379

of the algebra can use this table to lookup elements, instead of triggering a further recursive380

call. Elements are inserted into the memoisation table by the use of Cons to the result of381

applying the algebra. The algebra for the dynamorphism looks up the previously computed382

elements to produce the result, thus saving the corresponding recursive calls:383

Fixpoint memo_knap table wvs :=
match wvs with | nil => nil | h :: t =>

match lookupT (Nat.pred (fst h)) table with
| Some u => (u + snd h)%sint63 :: memo_knapsack table t
| None => memo_knapsack table t
end

end.

Definition knapsack_alg (wvs : list (nat * int))
(x : App NatF (Table NatF int)) : int :=
match x with | MkCont sx kx => match sx with
| inl tt => fun kx => 0%sint63
| inr tt => fun kx => let tbl := kx next_elem in max_int 0 (memo_knap tbl wvs)
end kx end.

Definition knapsackA wvs : App NatF (Table NatF int) ~> int :=
(* [knapsack_alg wvs] as a respecful morphism *)

The hylomorphism for knapsack is as follows, where out_nat is the recursive coalgebra for384

nat.385

Example knapsack wvs : Ext (dyna (knapsackA wvs) out_nat).

Coq’s code extraction mechanism is unable to inline several definitions in this case. We have386

manually inlined the extracted code for simplicity. The reader can check in our artefact that387

the extracted code can be trivially inlined to produce the following:388

let knapsack wvs x = let (y, _) =
(let rec f x0 =

if x0=0 then Uint63.of_int (0)
else let fn := f (x0-1) in { lFix_out = {

shape = (max_int (Uint63.of_int (0)) (memo_knap fn wvs), sx);
cont = fun _ -> fn } }

in f x).lFix_out.shape in y

Note how the recursive calls of f build the memoisation table, and how this memoisation389

table is used to compute the intermediate results in memo_knap, which is finally discarded to390

produce the final result.391

4.3 Shortcut Deforestation392

The final case study we consider is shortcut deforestation on lists. Shortcut deforestation can393

be expressed succintly in terms of hylomorphisms and their laws [27]. In particular, given a394

function:395

s : forall A. (App F A -> A) -> (App F A -> A)

We can conclude, by parametricity, that396
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hylo a l_out \o hylo (sigma l_in) c =e hylo (s a) c

This is generally known as the acid rain theorem. Unfortunately, this is not provable in Coq397

if we want to remain axiom-free, since we would need to add the necessary parametricity398

axiom [19]. However, we prove a specific version of this theorem for the list generating399

container (i.e. the container whose least fixed point is a list), and use it to encode the example400

from Takano and Meijer [27]:401

Definition sf1 (f : A ~> B) ys : Ext (length \o Lmap f \o append ys).

Here, we are defining function sf1 as the composition of length, Lmap f and append ys.402

Functions length and Lmap are catamorphisms. Function append ys is also a catamorphism403

that appends ys to an input list. It is defined by applying an algebra to every cons node of a404

list, and applying a catamorphism with the input algebra to ys in the nil case:405

Definition tau (l : list A) (a : Alg (ListF A) B) : App (ListF A) B -> B :=
fun x => match x with | MkCont sx kx => match sx with
| s_nil => fun _ => (hylo a ilist_coalg) l
| s_cons h => fun kx => a (MkCont (s_cons h) kx)
end kx end.

Definition append (l : list A) := hylo (tau l l_in) ilist_coalg.

Here, ilist_coalg is a recursive coalgebra from Coq lists to the ListF container. We apply406

the hylo fusion law repeatedly, unfold definitions, and simplify in our specification for sf1:407

Definition sf1 (f : A ~> B) ys : Ext (length \o Lmap f \o append ys).
rewrite hylo_map_fusion, <- acid_rain. simpl; reflexivity.

Defined.

From this, we extract the following OCaml code:408

let rec sf1 f ys = function | [] -> let rec f0 = function
| [] -> (Uint63.of_int (0))
| _ :: t -> add (Uint63.of_int (1)) (f0 t)

in f0 ys
| _ :: t -> add (Uint63.of_int (1)) (sf1 f ys t)

We then prove that the length function fuses with the naive quadratic reverse function:409

Definition sf2 : Ext (length \o reverse).
calculate. unfold length, reverse. rewrite hylo_fusion_l.
2:{ (* Rewrite into the fused version *) }
simpl; reflexivity.

Defined.

This code extracts to the optimised length function on the input list:410

let rec ex2 = function | [] -> (Uint63.of_int (0))
| _ :: t -> add (Uint63.of_int (1)) (ex2 t)

5 Related Work411

Encoding recursion schemes in Coq is not new. We compare our work with other encodings of412

program calculation techniques in Coq (Section 5.1), recursion schemes in Coq (Sections 5.1413

and 5.2.1). Finally, we compare our encoding of recursion schemes to other forms of414

termination checking (Section 5.2, and sized types (Section 5.2.2), as a way to guarantee415

termination of nonstructural recursion.416
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5.1 Program Calculation417

Within the domain of program optimization, program calculation serves as a well-established418

programming technique aimed at deriving efficient programs from their naive counterparts419

through systematic program transformation [13]. This area has been extensively explored420

over the years. Tesson et al. demonstrated the efficacy of leveraging Coq to establish an421

approach for implementing a robust system dedicated to verifying the correctness of program422

transformations for functions that manipulate lists [28]. Murata and Emoto went further and423

formalised recursion schemes in Coq [24]. Their development does not include hylomorphisms424

and dynamorphisms, and relies on the functional extensionality axiom, as well as further425

extensionality axioms for each coinductive datatype that they use. They do not discuss426

the extracted OCaml code from their formalisation. Larchey-Wendling and Monin encode427

recursion schemes in Coq, by formalising computational graphs of algorithms [20]. Their428

work does not focus on encoding generic recursion schemes, and proving their algebraic laws.429

Castro-Perez et al. [7] encode the laws of hylomorphisms as part of the type system of a430

functional language to calculate parallel programs from specifications. Their work focuses on431

parallelism, and they do not formalise their approach in a proof assistant, and the laws of432

hylomorphisms are axioms in their system.433

5.2 Termination Checking434

Termination and productivity are non-trivial properties of programs, and various meth-435

ods have been proposed for checking that these properties hold. A common approach is436

guardedness checking [14], which is a syntactic check that definitions avoid the introduction437

of non-normalizable terms. This sort of check generally looks for a structural decrease of438

arguments in the recursive calls of a function. Coq uses such a check, and it works for many439

classic functional programming patterns (like map and foldr). However, some desirable440

definitions will not be accepted by such checks.441

In particular, the problem of nonstructural recursion (including divide-and-conquer442

algorithms) is well-studied [5]. Certain functions that are not structurally recursive can443

be reformulated using a nonstandard approach to achieve structural recursion [3]. Take,444

for instance, division by iterated subtraction, which is inherently non-structurally recursive445

since it involves recursion based on the result of a subtraction. There is a nonstandard446

implementation of divivion found on Coq’s standard library, which involves a four-argument447

function that effectively combines subtraction and division. Similarly, the mergesort in Coq’s448

standard library uses an “explicit stack of pending merges” in order to avoid issues with449

nonstructural definitions. There is a major downside, however; as noted by Abreu et al., the450

result is “barely recognizable as a form of mergesort” [3].451

5.2.1 Divide and Conquer Recursion452

Abreu et al. [3] encode divide-and-conquer computations in Coq, using a recursion scheme453

in which termination is entirely enforced by its typing. This is a significant advance, since454

it avoids completely the need for termination proofs. Their work differs from ours in that455

they require the functional extensionality axiom, and the use of impredicative Set. The456

authors justify well the use of impredicative Set and its compatibility with the functional457

extensionality axiom. In contrast, our development remains entirely axiom-free. Another key458

difference with our approach is that they do not discuss what the resulting extracted code459

looks like (that is, whether the extracted OCaml code resembles the natural formulation of460

the recursive function). Through experiments, we found that their formalisation leads to461
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Obj.magic, and code with a complex structure that may be hard to understand or interface462

with other OCaml code. Due to the great benefit of entirely avoiding termination proofs, it463

would be interesting to extend their approach to improve code extraction.464

5.2.2 Sized Types465

Another approach to certifying termination of recursive functions is the use of sized types.466

Sized types were introduced by Hughes et al. as a way to track/verify various properties of467

recursive programs, including productivity and termination [18]. The core idea of sized types468

is that types express bounds on the sizes of recursive data structures. With this approach,469

algorithms are implemented in the standard functional way, following the divide-and-conquer470

pattern of splitting, recurring, and merging, with the addition of the data types being indexed471

by a static approximation of the relative size. An advantage of this approach is that it allows472

for code to be written in a natural way. There are costs, however. Programs must be written473

in a way that accounts for the handling of size indexes, and support for the size types must474

be added to the language.475

This approach has been used to express nonstructurally recursive algorithms in Agda:476

Copello et al. used sized types in a straightforward formulation of mergesort [9]. Such an477

approach has also been used in MiniAgda [2]. A proposal exists to add sized types to Coq as478

well, though it has not yet been adopted [8].479

6 Conclusions and Future Work480

Hylomorphisms are a general recursion scheme that can encode any other recursion scheme,481

and that satisfy a number of algebraic laws that can be used to reason about program482

equivalences. To our knowledge, this is their first formalisation in Coq. This is partly due to483

the difficulty of dealing with termination, and reasoning about functional extensionality. In484

this work, we tackle these problems in a fully axiom-free way that targets the extraction of485

idiomatic OCaml code. This formalisation allows the use of program calculation techniques486

in Coq to derive formally optimised implementations from naive specifications. Furthermore,487

the rewritings that are applied to specifications are formal, machine-checked proofs that the488

resulting program is extensionally equal to the input specification.489

Remaining axiom-free forces us to deal with the well-known setoid hell. As part of the490

future improvements, we will study how to mitigate this problem. At the moment, we use a491

short ad-hoc tactic that is able to automatically discharge many of these proofs in simple492

settings. We will study the more thorough and systematic use of proof automation for493

respectful morphisms. Generalised rewriting in proofs involving setoids tends to be quite494

slow, due to the large size of the terms that need to be rewritten. Sometimes, this size is495

hidden in implicit arguments and coercions. We will study alternative formulations to try496

to improve the performance of the rewriting tactics (e.g. canonical structures). Currently,497

Coq is unable to inline a number of trivially inlineable definitions. We will study alternative498

definitions, or extensions to Coq’s code extraction mechanisms to force the full inlining of499

all container code that is used in hylomorphisms. Finally, proving termination still remains500

a hurdle. In our framework this reduces to proving that the anamorphism terminates in501

all inputs, and we provide a convenient connection to well-founded recursion. Furthermore,502

recursive coalgebras compose with natural transformations, which allows the reuse of a503

number of core recursive coalgebras. A possible interesting future line of work is the use of504

the approach by Abreu et al. [3] in combination with ours to improve code extraction from505

divide-and-conquer computations whose termination does not require an external proof.506
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