
Program Optimisations via Hylomorphisms for1

Extraction of Executable Code2

David Castro Perez Envelope3

University Of Kent, Canterbury, CT2 7NZ, United Kingdom4

Marco Paviotti Envelope5

University Of Kent, Canterbury, CT2 7NZ, United Kingdom6

Michael Vollmer Envelope7

University Of Kent, Canterbury, CT2 7NZ, United Kingdom8

Abstract9

Generic programming with recursion schemes provides a powerful abstraction for structuring recursion10

and provides a rigorous reasoning principle for program optimisations which have been successfully11

applied to compilers for functional languages. Formalising recursion schemes in a type theory offers12

additional termination guarantees, but it often requires compromising on performance, requiring the13

assumption of additional axioms, and/or introducing unsafe casts into extracted code.14

This paper presents the first Coq formalisation of hylomorphisms allowing for the mechanisation15

of all recognised recursive algorithms. The key contribution of this paper is that this formalisation16

is fully axiom-free, and it allows the extraction of safe, idiomatic functional code. We exemplify17

the framework by formalising a series of algorithms based on different recursive paradigms such as18

divide-and conquer, dynamic programming, and mutual recursion and demonstrate that the extracted19

functional code for the programs formalised in our framework is efficient, humanly readable, and20

runnable. Furthermore, we show the use of the machine-checked proofs of the laws of hylomorphisms21

to do program optimisations.22

2012 ACM Subject Classification Theory of computation → Functional constructs; Theory of23

computation → Type theory; Theory of computation → Program verification24

Keywords and phrases hylomorphisms, program calculation, divide and conquer, fusion25

Digital Object Identifier 10.4230/LIPIcs.ITP.2025.2326

Funding David Castro Perez: EP/Y00339X/1, EP/T014512/127

1 Introduction28

Over the years, extensive research has been conducted on program calculation techniques, a29

well-established approach for deriving efficient programs from simpler specifications through30

systematic program transformation [12, 4]. A key aspect of this approach is the use of31

structured recursion schemes, which serve as powerful abstractions that capture common32

patterns of recursion. By structuring computation in this way, programs benefit from well-33

established algebraic properties that provide a solid foundation for reasoning about program34

equivalences, transformations, and optimisations – such as fusion laws or semi-automatic35

parallelisations [27, 11, 19, 7]. In the context of program calculation, these algebraic properties36

allow programmers to describe code using simple, inefficient specifications within an algebra37

of programming [4]. They can then apply algebraic laws to systematically calculate more38

efficient versions of the same algorithms.39

Suppose, for example, that we want to write a program that sorts a list of integers and40

multiplies them by 2 at the same time. In OCaml, we may write this function directly:41

© Jane Open Access and Joan R. Public;
licensed under Creative Commons License CC-BY 4.0

ITP 2025).
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:D.Castro-Perez@kent.ac.uk
mailto:M.Paviotti@kent.ac.uk
mailto:M.Vollmer@kent.ac.uk
https://doi.org/10.4230/LIPIcs.ITP.2025.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Program Optimisations via Hylomorphisms for Extraction of Executable Code

let rec sort_times_two = function
| [] -> []

| h :: t -> let (l, r) = partition (fun x -> x < h) t in
sort_times_two l @ (h * 2) :: sort_times_two r

This program is the same as composing a quicksort OCaml implementation, with the42

function map (fun x -> x * 2) which is a known program optimisation called fusion. A lot of43

program calculations have this pattern: start from a simple specification, e.g. map (λx. x ×44

2) ◦ sort, and use program equivalences and algebraic laws to rewrite it to an optimised45

version. We will revisit a similar example in Section 4.1.46

This program calculation stems from the more general theory of hylomorphisms. A47

hylomorphism is a structured recursion scheme representing the idea of a divide-and-conquer48

algorithm where, first, the problem is split into smaller sub-problems (divide), then sub-49

solutions are computed recursively, and, finally, these sub-solutions are put together to50

compute the solution to the original problem (conquer). This general pattern of recursion51

induces a reasoning principle, called the fusion law, which has been exemplified in the52

previous paragraph. By leveraging this principle, we can systematically transform recursive53

definitions into more efficient versions while preserving correctness.54

Hylomorphisms are highly versatile, non-structural recursive algorithms that are capable55

of implementing structural recursion as well as other known recursion schemes like mutual56

recursion, accumulators, primitive recursion, and course-of-values iteration (dynamic pro-57

gramming) [15]. However, this versatility comes with a trade-off: because hylomorphisms are58

not inherently structurally recursive, special attention is required when encoding them in a59

type theory. Specifically, the “divide” phase of the algorithm must be recursive, meaning the60

input needs to be broken down into smaller parts, which do not necessarily align with the61

structure of the input data. On the other hand, a key benefit is the reusability of termination62

proofs: once the correctness of the divide phase is established, the same proof can be reused63

for any other conquer phase we choose. Moreover, in the case of structural recursion, the64

divide phase naturally follows the structure of the data, making it correct by definition and65

eliminating the need for additional proofs.66

Implementations of recursion schemes generally focus on non-terminating languages (e.g.67

Haskell) and they would benefit from a type-theoretical formalisation which leverages the68

underlying prover’s logic to ensure correctness of definitions. While existing mechanisations69

do exist they either do not cover a large subset of the recursion schemes or are not suitable70

for program calculation or code extraction (see Section 5, Related Work).71

In this work, we mechanise hylomorphisms, reaping the benefits of their generality and72

algebraic properties. Our approach enables users to write high-level specifications for their73

programs, reason about program optimisations, and ultimately extract human-readable,74

executable functional code. The extracted code is free from unsafe casts, a priority in our75

design. We focus strongly on avoiding unsafe casts because, even if the extracted code has76

been verified, simple interoperations with them can lead to incorrect behaviour or even77

segmentation faults [10] and, moreover, it invalidates the fast-and-loose principle [8].78

To preserve the generality of hylomorphisms, we encode data structures using polynomial79

functors. To ensure that the extracted code is runnable, avoid using indexed types in the80

definition of our recursion schemes. To strengthen the results of this paper, we avoid all81

axioms.82

We list the contributions of this paper. First, in Section 2, we provide the theoretical83

background on recursion schemes and hylomorphisms. We then provide a Coq formalisation84

of hylomorphisms (Section 3) that (1) is fully axiom-free; (2) allows the extraction of idiomatic85

D. Castro Perez et al. 23:3

and efficient code; and (3) can use regular Coq equalities to do program calculation, derive86

correct implementations, and apply optimisations. In Section 4, we apply this framework87

to formalise practical examples of divide-and-conquer, dynamic programming, and mutual88

recursion algorithms. Additionally, we verify the short-cut fusion optimisation and present89

the extracted optimised code.90

2 Recursion Schemes91

The structure of data is very similar to the structure of an algorithm which processes that data.92

This relationship manifests in the form of structured recursion schemes, which are widely used93

in functional languages such Haskell. Canonical examples are folds (catamorphisms), which94

consume data, and unfolds (anamorphisms), which produce it. While some implementations95

of recursion schemes like foldr/unfoldr in Haskell are specific to a particular data structure,96

in this case Lists, we can generalise these ideas further to account for generic (co)inductive97

data types and generic algorithms operating on them.98

Furthermore, folds and unfolds can be shown to capture a wide range of recursion schemes,99

such as primitive recursion, mutual recursion, dynamic programming algorithms, polymorphic100

recursion, and recursion with accumulators. However, for divide-and-conquer algorithms,101

folds need to be generalised to hylomorphisms, which provide the ultimate basic building102

block for any other recursion scheme. To do this, we look at recursion schemes from the103

point of view of category theory.104

2.1 Elements of Category Theory105

A category is a collection of objects A, B, C, denoted by Obj(C) and a collection of arrows106

f, g, h between these objects, denoted by Arr(C), such that there always exists an identity107

arrow idA : A → A for each object A and for two arrows A
f−→ B and B

g−→ C there always108

exists an arrow A
g◦f−−→ C obeying the associativity law. We denote HomC(A, B) the set of109

arrows from A to B and we use the letters C, D, E . . . for categories1. The initial object110

(when it exists), denoted by 0, is the object such that for any other object A there is a unique111

arrow 0 !−→ A. Dually, the terminal object (when it exists), denoted by 1, is the object such112

that for any other object A there is a unique arrow A
!−→ 1. As a result of the uniqueness113

properties, initial and terminal objects are unique up-to isomorphism.114

For example, the category of sets, denoted by Set, is the category where objects are sets115

and arrows are functions between sets. The initial object 0 in Set is the empty set ∅ and116

the terminal object 1 is any singleton set. The reader who is not accustomed with category117

theory can assume types are sets, giving the intuition that the category Set can also be118

viewed as the category of (simple) types and programs between them.119

A functor F : C → D is a map between categories mapping both objects and arrows from
one category to another. Hence a functor has two components, one which maps objects into
objects F : Obj(C) → Obj(D) and one which maps arrows into arrows F : HomC(A, B) →
HomD(FA, FB) such that identity and composition of arrows are preserved:

F (idA) = idF A F (g ◦ f) = F (g) ◦ F (f)

1 For presentation purposes we shall not deal with size issues and assume all the categories are locally
small.

ITP 2025

23:4 Program Optimisations via Hylomorphisms for Extraction of Executable Code

This latter component is also called the functorial action and, if types are Sets, this can be120

thought of as the fmap higher-order function in functional programming.121

In Set, we can define the set of lists122

List(A) ∼= 1 + A × List(A)123

as the set inductively generated by the constructors nil : 1 → List(A) and cons : A×List(A) →124

List(A). The List(−) type is a functor Set → Set, in particular, an endofunctor, mapping125

objects and arrows in Set to Set itself. Its functorial action List(f) : List(A) → List(B) is126

given by List(f)(nil(∗)) = nil(∗) and List(f)(cons(a, xs)) = cons(f(a), List(f)(xs)). Notice127

that the definition List(f) is well-defined as it recursively calls on a smaller argument. Similarly,128

the set of streams Str(A) ∼= A × Str(A) is the greatest set generated by the constructor129

cons : A × Str(A) → Str(A). The maps head : Str(A) → A and tail : Str(A) → Str(A) can be130

easily constructed from the isomorphism.131

Given two functors F, G : C → D, a natural transformation is is a family of morphisms132

φX : FX → GX indexed by the objects X ∈ Obj(C) and such that it is natural in X, that is133

G(f) · φX = φY · F (f), for all morphisms f : X → Y . Intuitively, a natural transformation is134

akin to a polymorphic function transforming the structure of a functor into the structure of135

another functor without assuming what is the type of data contained in them. For example,136

a program f : List X → MaybeX which returns nothing if the list is empty and the head of137

the list otherwise can work for all types X uniformly because it needs not to inspect the138

data inside the list.139

2.2 Algebras and Catamorphisms140

For an endofunctor F : C → C an F -algebra is a pair (X, aX) where X is an object of the141

category called the carrier of the algebra and aX is an arrow of type FX → X called the142

structure map. The category of F -algebras, denoted by F -Alg(C), is the category where143

objects are F -algebras and arrows f : (X, aX) → (Y, aY) are F -algebra homomorphisms.144

These are arrows f : X → Y in the underlying category C such that they respect the structure145

of the algebra, that is f ◦ aX = aY ◦ F (f). The initial object in this category is called the146

initial F -algebra, that is the F -algebra which has a unique F -algebra homomorphism into any147

other F -algebra. By Lambek’s lemma if F has an initial F -algebra then this is the least fixed-148

point for the functor F which we denote by (µF, in) where in : FµF → µF is the F -algebra149

witnessing the isomorphism FµF ∼= µF , furthermore in◦ : µF → FµF is the inverse of in.150

The uniqueness property of initial F -algebras states that for any other F -algebra (X, aX)151

there exists a unique F -algebra homomorphism, denoted by αX : (µF, in) → (X, aX) and152

pronounced “catamorphism” or “fold” satisfying:153

f = aX ⇐⇒ f = aX ◦ F (f) ◦ in◦ (1)154

As a result of the uniqueness property we can derive the fusion law. For all F -algebra155

homomorphisms f : (X, aX) → (Y, aY) we have156

f ◦ aX = aY (2)157

which means that the composition of a program f with a catamorphism recursing once over158

the data structure is the same as performing that recursion once using the algebra aY instead159

of aX . This is a useful result for program optimisation as we shall see.160

For example, for a set A we define the functor F : Set → Set mapping X 7→ 1+A×X. An161

F -algebra is a set B together with a structure map [base, step] : 1 + A × B → B. The initial162

D. Castro Perez et al. 23:5

F -algebra is clearly the set of lists List(A) and the catamorphism associated with the type of163

lists is the unique arrow which recursively translates the initial algebra [nil, cons] into the164

algebra [base, step] while turning the operation nil into base and cons into step. In functional165

programming this is commonly referred to as foldr : (1 → B) → (A×B → B) → List(A) → B.166

We can in fact set foldr base step = [base, step] .167

2.3 Coalgebras and Anamorphisms168

The dual of an algebra is a coalgebra. For an endofunctor B : C → C, a B-coalgebra is a pair169

(X, cX) where X ∈ Obj(C) is the carrier of the coalgebra and cX : X → BX is a morphism.170

For example, for a set of states X and a finite set of labels L we can define a labelled171

transition system (LTS) [30] on X as a function X → BX implementing the transition172

system with BX = L × X. In particular, for a state x1 ∈ X, c(x1) returns a pair (l, x2)173

where l ∈ L is the observable action and x2 ∈ X is the next state.174

The category of B-coalgebras, denoted B-CoAlg, is the category where objects are B-175

coalgebras and morphisms f : (X, cX) → (Y, cY) are B-coalgebra homomorphisms f : A → B,176

that is cY ◦ f = F (f) ◦ cX . The terminal object in this category is called the terminal, or177

final, B-coalgebra. The carrier of this coalgebra corresponds to the greatest fixed-point for178

the functor B, denoted by (νB, out) with out being the final B-coalgebra witnessing the179

isomorphism and out◦ : BνB → νB being its inverse.180

For example, the terminal coalgebra for the functor BX = A × X is the set of infinite181

streams over the set A, that is the greatest solution to the equation Str(A) ∼= A×Str(A). The182

uniqueness property of terminal B-coalgebras states that for any other B-coalgebra (X, cX)183

there exists a unique B-coalgebra homomorphism into the terminal coalgebra (νB, out) which184

is denoted by cX and pronounced “anamorphism” or “unfold”. We spell out the uniqueness185

property:186

f = cX ⇐⇒ f = out◦ ◦ B(f) ◦ cX (3)187

From the uniqueness property we can derive the fusion law for unfolds:188

cY ◦ f = cX (4)189

for all B-coalgebra homomorphisms f : (X, cX) → (Y, cY).190

2.4 Recursive Coalgebras and Hylomorphism191

Recursion schemes provide an abstract way to consume and generate data capturing divide-192

and-conquer algorithms where the input is first destructured (divide) in smaller parts by193

means of a coalgebra which are computed recursively and then composed back together194

(conquer) by means of an algebra.195

Let (A, a) be an F -algebra and (C, c) be an F -coalgebra. An arrow C → A is an196

hylomorphism, written h : (C, c) � (A, a) if it satisfies197

h = a ◦ F (h) ◦ c (5)198

A solution to this equation does not exist for an arbitrary algebra and coalgebra pair and, in199

fact, a definition like this cannot be accepted by Coq.200

A coalgebra (C, c) is recursive if for every algebra (A, a) there is a unique hylo (C, c) �201

(A, a) [6, 3]. We denote these type of hylos by c → a .202

ITP 2025

23:6 Program Optimisations via Hylomorphisms for Extraction of Executable Code

An example of a recursive coalgebra is the partition function used in quicksort, which203

has the type List A → B(List A), where the functor B is defined as BX = X × A × X. This204

function deconstructs a list by selecting a pivot element of type A and splitting the remaining205

elements into two sublists.206

Notice that the initial algebra for lists corresponds to the functor FX = 1 + A × X207

and its associated algebra map (or its inverse, viewed as a coalgebra), in◦ has the type208

List A → F (List A). Importantly, partition is not this map, which means that it does not209

arise from the standard initial algebra structure, and thus catamorphisms here cannot be210

used to define recursive functions.211

Nevertheless, since partition always produces sublists that are strictly smaller than the212

input list, it still supports a well-founded recursion scheme, ensuring the existence of a unique213

solution. The uniqueness property of the hylomorphisms yields the following fusion laws:214

f ◦ c → a = c → a′ ⇐= f ◦ a = a′ ◦ F (f) (6)215

c → a ◦ f = c′ → a ⇐= c ◦ f = F (f) ◦ c′ (7)216

Using the hylomorphism fusion laws, we can prove the well-known deforestation optimisa-217

tion [29], also known as the composition law [14]. This is when two consecutive recursive218

computations, one that builds a data structure, and another one that consumes it, can be219

fused together into a single recursive definition.220

Recursive Anamorphisms221

Anamorphisms applied to recursive coalgebras specialise to hylomorphisms into an inductive222

data type in the following way. A recursive coalgebra can be applied only finitely many times,223

therefore when this is applied to an anamorphism the only possible types it can produce224

from the seed are the finite ones. We call this special kind of recursion scheme recursive225

anamorphism. We can show that recursive anamorphisms of type X → νF can also be226

given the type X → µF . Moreover, these anamorphisms are exactly hylomorphisms on the227

recursive F -coalgebra and the algebra in for the inductive data type µF . This fact falls out228

from the uniqueness property of the hylomorphism and the fact that recursive anamorphisms229

satisfy the same equation.230

2.5 Polynomial Functors231

Recursion schemes are formulated using generic functors that encapsulate the structure of the232

recursive operator. However, since not all functors have suitable fixed points, it is necessary233

to restrict our focus to strictly positive functors.234

For example, in the category Set, consider the polynomial functor corresponding to235

F (X) = A + B × X + C × X2.236

We can model this functor by using a container [1]. This is a set S of shapes, for example,237

S = A + B + C for the example above, together with a function P (s) denoting the exponent238

of X for each shape. Then a container extension is defined as the sum of all maps P (s) → X239

F (X) =
∑
s∈S

(P (s) → X)240

The functorial action of F is given by post-composition, mapping an element (s, g) in F (X)241

to (s, f ◦ g) in F (Y), for f : A → B.242

D. Castro Perez et al. 23:7

3 Formalising Recursion Schemes243

We now consider the formalisation of hylomorphisms in Coq. We first formalise container244

functors as a tool to represent polynomial functors (Section 3.1). Then we formalise algebras245

for container extensions (Section 3.2). In Section 3.3 we formalise coalgebras and put together246

these notions to formalise recursive coalgebras and hylomorphisms (Section 3.4).247

3.1 Mechanising Extractable Container Functors248

A direct encoding of containers as presented in Section 2 requires the use of the functional249

extensionality axiom, and axiom K to deal with equalities of objects of type P (s) → X.250

Axiom K states that a predicate on equality proofs holds for all such proofs if it holds for251

reflexivity. This would be needed to reason about the equality of any two f : P (s1) → X252

and g : P (s2) → X, when s1 = s2. In Coq, if we know (s1, f) = (s2, g), we cannot extract253

a proof that f = g unless we assume axiom K, or the equality on the type of s1 and s2 is254

decidable. Furthermore, upon extraction Coq will need to insert unsafe casts for anything of255

type P (s), because OCaml requires the input value to have a type that is identical to the256

function parameter, and in the general case this cannot be done in OCaml. To avoid these257

problems, we use setoids, and encode families of positions using decidable validity predicates.258

In our formalisation, we require that every type is a setoid, where x =e y denotes setoid259

equality and that all morphisms need to be proper morphisms that respect setoid equalities.260

We use special notation A ~> B for proper morphisms and we add an implicit coercion from A261

~> B to A -> B. We also provide tactics to automatically discharge proofs that morphisms are262

proper, for some simple cases.263

We define containers in terms of shapes, base positions (APos : Set), and decidable validity264

predicates that specify when a base position is valid in a shape. Since validity predicates265

are in Prop, they will be erased during extraction, and since they are decidable, they do not266

require axiom K to deal with heterogeneous equalities. Container extensions are defined as267

Record App F X := {shape : Shape F; cont : {p : APos F | valid s p = true} -> X}.

We define the setoid equality of two container extensions x y : App F X as268

shape x =e shape y /\ (forall p p', projT1 p = projT1 p' -> cont x p =e cont y p')

3.2 Algebras and Catamorphisms for Containers269

Recall that an algebra is a set A together with a morphism that defines the operations of270

the algebra F A → A. Given a type A and a container F, an ‘App F’-algebra (or ‘F-algebra’ for271

short) is a pair given by the carrier A, and the structure map of type:272

Notation Alg F A := (App F A ~> A).

We define the initial F-algebra as the inductive type which is constructed by applying App F273

finitely many times.274

Inductive LFix F : Type := LFix_in { LFix_out : App F (LFix F) }.

LFix_in is the initial algebra in, while LFix_out is its inverse in◦ (see Section 2). As an example,275

the initial F-algebra for the container that is isomorphic to the functor F X = unit + A * X is276

the type of lists with the F-algebra being defined by the empty list Empty : unit -> LFix F277

and the cons operation Cons : A * LFix F -> LFix F.278

The LFix F setoid equality is the least fixed point of the App F setoid equality, i.e. if LFixR279

F represents the setoid equality of LFix F, and we have two x y : LFix F, then LFixR F x y iff280

ITP 2025

23:8 Program Optimisations via Hylomorphisms for Extraction of Executable Code

shape x =e shape y /\ (forall p p', projT1 p = projT1 p'

-> LFixR F (cont x p) (cont y p'))

We define smart constructors for the isomorphism of least fixed points as proper morphisms:281

l_in : App F (LFix F) ~> LFix F l_out : LFix F ~> App F (LFix F)

Catamorphisms are constructed so that they structurally deconstruct the datatype, call282

themselves recursively, and then compose the result using an F-algebra.283

Definition cata_f (a : Alg F A) : LFix F -> A

:= fix f (x : LFix) := match x with
| LFix_in x => a {shape := shape x; cont := fun e => f (cont x e)}

end.

It is easy to prove that catamorphisms respect setoid equalities. In fact, we define it as a284

setoid morphism between the setoid of F-algebras and the setoid of functions from LFix F to285

A:286

cata : forall `{setoid A}, Alg F A ~> (LFix F ~> A)

Finally, we prove that catamorphisms satisfy their universal property (see Section 2):287

Lemma cata_univ `{eA : setoid A} (alg : Alg F A) (f : LFix ~> A)

: f =e cata alg <-> f =e alg \o fmap f \o l_out.

In other words, if there is any other f with the same structural recursive shape as the288

catamorphism on the algebra alg then it must be equal to that catamorphism.289

3.3 Coalgebras and Anamorphisms290

In general, for a container F, an F-coalgebra is a pair of a carrier X and a structure map X ->291

App F X. In our development we use the following notation for coalgebras:292

Notation Coalg F A := (A ~> App F A).

Dually to the initial F-algebra, a final F-coalgebra is the greatest fixed-point of App F. We293

define it using a coinductive data type:294

CoInductive GFix F : Type := GFix_in { GFix_out : App F GFix }.

GFix_out is the final F-coalgebra and GFix_in is its inverse witnessing the isomorphism.295

Similarly to LFix, GFix is also defined as a setoid, with an equivalence relation that is the296

greatest fixpoint of the App F setoid equality. Additionally, we define smart constructors for297

the isomorphism of greatest fixed points:298

g_in : App F (GFix F) ~> GFix F g_out : GFix F ~> App F (GFix F)

The greatest fixed-point is a terminal F-coalgebra in the sense that it yields a coinductive299

recursion scheme: the anamorphism.300

Definition ana_f_ (c : Coalg F A) :=

cofix f x := let cx := c x in
GFix_in { shape := shape cx; cont := fun e => f (cont cx e) }.

Definition ana : forall `{setoid A}, Coalg F A ~> A ~> GFix F := (*...*)

From this definition the universal property falls out:301

Lemma ana_univ `{eA : setoid A} (h : Coalg F A) (f : A ~> GFix F)

: f =e ana h <-> f =e g_in \o fmap f \o h.

In words, for any F-coalgebra, if there is any other function f that is an F-coalgebra homo-302

morphism then it must be the anamorphism on the same coalgebra.303

D. Castro Perez et al. 23:9

3.4 Mechanising Hylomorphisms304

Recall that hylomorphisms capture the concept of divide-and-conquer algorithms where305

the input is first destructured (divide) in smaller parts by means of a coalgebra which are306

computed recursively and then composed back together (conquer) by means of an algebra.307

As we mentioned in Section 2, given an F -algebra a and F -coalgebra c, f is a hylomorphism308

if it satisfies309

f = a ◦ F f ◦ c310

As we stated earlier, a solution to this equation does not exist for an arbitrary algebra/coal-311

gebra pair and, in fact, a recursive function definition like this cannot be directly accepted312

by Coq.313

In order to find the unique solution we restrict ourselves to the so-called recursive314

coalgebras [3, 6]. We mechanise recursive hylomorphisms which are guaranteed to have a315

unique solution to the hylomorphism equation. These are hylomorphisms where the coalgebra316

is recursive, i.e. coalgebras that terminate on all inputs. We represent recursive coalgebras317

using a predicate that states that a coalgebra terminates on an input:318

Inductive RecF (h : Coalg F A) : A -> Prop :=

| RecF_fold x : (forall e, RecF h (cont (h x) e)) -> RecF h x.

RecF represents that a coalgebra will eventually terminate on an input. The base case takes319

place when the set of valid positions in the container extension returned by h x is empty. For320

convenience, we equip recursive coalgebras with an additional proof of termination:321

Notation RCoalg F A := ({ c : Coalg F A | forall x, RecF c x }).

Recursive hylomorphisms are implemented by structural recursion on the proof that coalgebra322

c eventually terminates for some input x (RecF c x).323

Definition hylo_def (a : Alg F B) (c : Coalg F A) : forall (x : A), RecF c x -> B

:= fix f x H

:= match c x as cx return (forall e : Pos (shape cx), RecF c (cont cx e)) -> B with
| cx => fun H => a { shape := shape cx ; cont := fun e => f (cont cx e) (H e) }

end (RecF_inv H).

We use RecF_inv to obtain the structurally smaller proof to use in the recursive calls. As we324

did with catamorphisms and anamorphisms, we prove that hylo_def is a proper morphism,325

and use this proof to build the corresponding higher-order proper morphism:326

hylo : forall F `{setoid A} `{setoid B}, Alg F B ~> RCoalg F A ~> A ~> B

Finally, we show that recursive hylomorphisms are the unique solution to the following327

hylomorphism equation:328

Lemma hylo_uniq (g : Alg F B) (h : RCoalg F A) (f : A ~> B)

: f =e hylo g h <-> f =e g \o fmap f \o h.

Fusing a hylomorphism with any algebra or coalgebra homomorphism (in the code below, f2329

and f1 respectively) falls out from this uniqueness property:330

Lemma hylo_fusion_l (h1 : RCoalg F A) (g1 : Alg F B) (g2 : Alg F C) (f2 : B ~> C)

: f2 \o g1 =e g2 \o fmap f2 -> f2 \o hylo g1 h1 =e hylo g2 h1.

Lemma hylo_fusion_r (h1 : RCoalg F B) (g1 : Alg F C) (h2 : RCoalg F A) (f1 : A ~> B)

: h1 \o f1 =e fmap f1 \o h2 -> hylo g1 h1 \o f1 =e hylo g1 h2.

ITP 2025

23:10 Program Optimisations via Hylomorphisms for Extraction of Executable Code

(* E2 : f2 \o g1 =e g2 \o fmap f2 *)

(* ------------------------------------- *)

(* Goal : f2 \o hylo g1 h1 =e hylo g2 h1 *)

apply hylo_uniq.

(* f2 \o hylo g1 h1 =e (g2 \o fmap (f2 \o hylo g1 h1)) \o h1 *)

rewrite fmap_comp.

rewrite ... (* rearranging by associativity *)

(* f2 \o hylo g1 h1 =e ((g2 \o fmap f2) \o fmap (hylo g1 h1)) \o h1 *)

rewrite <- E2.

rewrite ... (* rearranging by associativity *)

(* f2 \o hylo g1 h1 =e f2 \o ((g1 \o fmap (hylo g1 h1)) \o h1) *)

rewrite <- hylo_unroll.

(* f2 \o hylo g1 h1 =e f2 \o hylo g1 h1 *)

Figure 1 Rewrite steps to prove hylo_fusion_l in our mechanisation. The steps are exactly the
same that would be required in a manual pen-and-paper proof.

It is important to highlight that, in our mechanisation, these proofs follow exactly the331

steps that one would do in a pen-and-paper proof. We show the series of rewrite steps332

for hylo_fusion_l in Figure 1. The steps of this proof are: (1) apply the uniqueness law of333

recursive hylomorphisms; (2) rewrite using that functors preserve composition; (3) rewrite334

using the condition of hylo_fusion_l; (4) use the uniqueness law of hylomorphisms to fold335

a ◦ F f ◦ c into f .336

Proving the deforestation optimisation is a straightforward application of hylo_fusion_l337

(or hylo_fusion_r).,338

Lemma deforest (h1 : RCoalg F A) (g2 : Alg F C) (g1 : Alg F B) (h2 : RCoalg F B)

: h2 \o g1 =e id -> hylo g2 h2 \o hylo g1 h1 =e hylo g2 h1.

3.4.1 On the subtype of finite elements339

As we mention in Section 2, we define recursive anamorphisms as hylomorphisms built by340

using a recursive coalgebra, and the respective initial F-algebra. In other words, in this341

development we have defined recursive anamorphisms on inductive data types. We might as342

well have defined them on the subtype of finite elements of coinductive data types using a343

predicate which states when an element of a coinductive data type is finite:344

Definition FinF : GFix F -> Prop := RecF g_out.

FinF represents finiteness since it must contain a base case with no positions, after a finite345

number of applications of g_out. Now the subtype {x : GFix F | FinF x} of finite elements346

for GFix F is isomorphic to its corresponding inductive data type LFix F. We show this by347

defining a catamorphism ccata_f_ from the subtype {x : GFix F | FinF x} of finitary elements348

of GFix F to any F-algebra.349

Definition ccata_f_ `{eA : setoid A} (g : Alg F A)

: forall x : GFix F, FinF x -> A := fix f x H :=

let hx := g_out x in
g (MkCont (shape hx) (fun e => f (cont hx e) (RecF_inv H e))).

We now prove this is isomorphic to the least fixed-point of the functor F. We take the350

catamorphism from the finite elements of GFix F to the inductive data type LFix F using351

the F-algebra l_in. Its inverse is the catamorphism on the restriction of g_in to the finite352

elements of GFix, which we denote by lg_in. The following lemmas prove the isomorphism:353

D. Castro Perez et al. 23:11

Lemma cata_ccata `{setoid A} : cata lg_in \o ccata l_in =e id.

Lemma ccata_cata `{setoid A} : ccata l_in \o cata lg_in =e id.

The finite subtype of GFix F allows us to compose catamorphisms and anamorphisms, by using354

the above isomorphism. In our work, however, we use recursive anamorphisms, defined as355

hylomorphisms on the recursive coalgebra c, and the initial F-algebra: hylo l_in c. The main356

advantage of this definition is that recursive anamorphisms compose with catamorphisms357

without the need to reason about termination and finiteness of values.358

3.4.2 Proving Correctness359

Suppose that we have an algebra a : Alg F B, a recursive coalgebra c : RCoalg F A, and a360

property P : A -> B -> Prop, and we want to guarantee that the hylomorphism satisfies this361

property: forall x, P x (hylo a c x). Such proofs in our framework are done by induction362

on the proof that the recursive coalgebra terminates. In particular, the induction hypothesis363

would be that P is satisfied by any recursive call of the hylomorphism364

forall e, P (cont (c x) e) (hylo a c (cont (c x) e))

Then, by the uniqueness property of hylomorphisms, it is enough to prove that P is satisfied365

by the unfolding of the hylomorphism:366

P x ((a \o fmap (hylo a c) \o c) x)

We will see in Section 4 one example where we will prove that the output of a sorting367

algorithm is a sorted permutation of the input, and show that these proofs are comparable to368

other techniques for non-structural recursion, with the additional advantage that any result369

that is proven on a hylomorphism will also hold for any result of doing program calculation.370

4 Extraction371

In this section we show how programs and their optimisations can be encoded in our framework372

and how can they be extracted to idiomatic functional code. Although our examples use373

OCaml as target language, extraction works equally well to other target languages (e.g.374

Haskell or Scheme). In particular, we show how to formalise sorting algorithms by looking375

at quicksort (Section 4.1), we show how to formalise dynamic programming algorithms376

by looking at knapsack (Section 4.2), and, finally, we show an example of the shortcut377

deforestation optimisation (Section 4.3).378

4.1 Sorting Algorithms379

We now focus on divide-and-conquer sorting algorithms and demonstrate how to use program380

calculation to apply a fusion optimisation. In the supplemental material accompanying this381

paper, we formalise both mergesort and quicksort, but in this section, we focus solely on382

quicksort. The recursive structure of quicksort is given by the following functor383

Inductive ITreeF A X := i_leaf | i_node (n : A) (l r : X)

The idea is that a list is either empty or is split into a pivot which is represented by node of384

type N and the two sublists of type X.385

The container encoding ITreeF has two shapes, one for leaves and one for nodes, and386

nodes have two positions, one for each sublist l r : X in i_node.387

ITP 2025

23:12 Program Optimisations via Hylomorphisms for Extraction of Executable Code

Inductive Tshape A := | Leaf | Node (ELEM : A).

Inductive Tpos := | Lbranch | Rbranch.

The validity predicate, valid_f below, simply specifies that positions are only valid in Node.388

Our tactics automatically discharge the necessary proofs to construct the respective setoid389

morphism.390

Definition valid {A} (x : Tshape A * Tp) : bool :=

match x with | (Node _ _, _) => true | _ => false end.

The container for ITreeF is denoted by TreeF. For convenience, we define the wrappers a_leaf391

and a_node to construct values of the extension of this container. Now, the container for392

quicksort is given by TreeF int. In the definition below, we use posL and posR as wrappers393

for Lbranch and Rbranch with validity proofs.394

Definition qsplit_f (x : list int) : App (TreeF int) (list int) :=

match x with
| nil => a_leaf

| cons h t => let (l, r) := List.partition (fun x => x <=? h) t in a_node h l r

end.

Definition merge_f (x : App (TreeF int) (list int)) : list int :=

let (sx, kx) := x in
match sx return (Container.Pos sx -> _) -> _ with
| Leaf _ => fun _ => nil

| Node h => fun k => List.app (k (posL h)) (h :: k (posR h))

end kx.

The proofs that these are proper morphisms (called merge and qsplit) are automatically395

discharged by our tactics, but we still have to prove that the coalgebra qsplit is recursive. In396

general, we know that if the input is related to the data inside the structure functor returned397

by the coalgebra by some well-founded relation R, then the coalgebra is recursive. In this398

specific case, it is sufficient to show that the two sublists are smaller than the input list.399

forall x (p : Pos (shape (qsplit x))), length (cont (qsplit x) p) < length x.

We can directly write mergesort as hylo merge qsplit, or derive it by program calculation400

from the composition of cata merge, and the recursive anamorphism hylo l_in qsplit. The401

resulting extracted code is similar to a hand-written implementation:402

let rec qsort = function
| [] -> []

| h :: t -> let (l, r) = partition (fun x0 -> leb x0 h) t in
let x0 = fun e -> qsort (match e with | Lbranch -> l | Rbranch -> r) in
app (x0 Lbranch) (h :: (x0 Rbranch))

The correctness proof is done by proving the following statement:403

forall (l : list int), Sorted (hylo merge qsplit l) /\ Perm l (hylo merge qsplit l).

that is any list produced by quicksort is sorted and is some permutation of the original one.404

The proof is by induction on the fact that qsplit is recursive. This means that qsplit405

terminates on l. In practice this is done by using the tactic induction (recP qsplit l).406

Then we can unfold hylo merge qsplit to merge \o fmap (hylo merge qsplit) \o qsplit using407

D. Castro Perez et al. 23:13

hylomorphism uniqueness (Section 3.4). The rest of the proof is standard. Overall, our proof408

is shorter than alternative implementations, and of comparable complexity1.409

4.1.1 Fusing a divide-and-conquer computation410

We now show how we can use program calculation techniques to fuse a traversal with a411

divide-and-conquer algorithm to obtain a new program that only performs recursion once412

instead of twice. In particular, we can map a function to the result of quicksort and obtain413

a new program which orders the elements and computes the function on every element by414

traversing the list only once. The composition of these two programs is given by the following:415

Definition qsort_times_two := Lmap times_two \o hylo merge qsplit.

where Lmap times_two is a list map function defined as a hylomorphism, and times_two416

multiplies every element of the list by two. We can use Coq’s generalised rewriting [25] and417

hylo_fusion_l to fuse times_two into hylo merge qsplit which gives the program hylo (merge418

\o natural times_two) qsplit. In this definition, natural defines a natural transformation by419

applying times_two to the shapes thus multiplying every pivot by two.420

let rec qsort_times_two = function | [] -> []

| h :: t -> let (l, r) = partition (fun x0 -> leb x0 h) t in
let x0 = fun p -> qsort_times_two (match p with

| Lbranch -> l | Rbranch -> r) in
app (x0 Lbranch) ((mul (Uint63.of_int (2)) h) :: (x0 Rbranch))

The extracted OCaml code is a single recursive traversal. Note the similarity to a hand-written421

implementation, and that it has been derived by fusing two different recursive programs422

using regular Coq rewrite tactics.423

It would be straightforward to prove the correctness of the fused version, by simply424

proving that Lmap times_two preserves the order of the elements.425

4.2 Knapsack426

Dynamorphisms are hylomorphisms where the algebra has access to the memory table of the427

result of all previous recursive calls. To implement this we need to formalise the idea of a428

memory table which is in our case simply represented by the cofree comonad. For a functor429

G : C → C the cofree comonad is defined as the greatest solution to the following equation430

G∞A ∼= A × G(G∞A)431

In words, these are the (possibly) infinite trees which branch out with shape G. For example,432

for the identity functor Id∞A is the type of infinite streams. For GX = 1 + X, the type433

G∞A is isomorphic to A × (1 + G∞A). This is the type representing our memory table with434

the operation headA : G∞A being the result of the previous recursive call. Notice that in435

the case of a recursive G-coalgebra this type only contains finite G-trees and so we can view436

G∞A as the finite G-trees thus being able to inspect all the previous recursive calls. This437

has been expounded thoroughly by Hinze et al. [15].438

In our framework, we formalise G as a container with shape Sg and position Pg, then Memo439

is the least fixed-point of the functor FX = A × GX:440

1 The QSort definition and correctness proof in the equations package is under 200LOC – https://git-
hub.com/mattam82/Coq-Equations/blob/8.20/examples/quicksort.v, and other online proofs of correct-
ness are of similar complexity https://gist.github.com/RyanGlScott/ff36cd6f6479b33becca83379a36ce49

ITP 2025

https://github.com/mattam82/Coq-Equations/blob/8.20/examples/quicksort.v
https://github.com/mattam82/Coq-Equations/blob/8.20/examples/quicksort.v
https://gist.github.com/RyanGlScott/ff36cd6f6479b33becca83379a36ce49

23:14 Program Optimisations via Hylomorphisms for Extraction of Executable Code

Instance Memo A : Cont (A * Sg) Pg := { valid := valid \o pair (snd \o fst) snd }.

Definition Table A := LFix (Memo A).

The operations of the cofree comonad Memo are the Cons, the headT and the tailT:441

Definition consT A : A * App G (Table A) ~> Table A := (* *)

Definition headT A : Table A ~> A := (* *)

Definition tailT A : TableA ~> App G (Table A) := (* *)

Finally, we define a dynamorphism as a hylomorphism from a type B into a type Table442

post-composed with the headT map which outputs the last result from the memory table:443

Definition dyna A (a : App G (Table A) ~> A) (c : RCoalg G B) : B ~> A

:= headT \o hylo (consT \o pair a id) c.

Note the map App G (Table A) ~> A corresponding to a map GG∞A → A is not a G-algebra.444

To recover the G-algebra we need to transform it by pairing it with the identity map and445

post-composing it with consT. This algebra uses this table to lookup elements, instead of446

triggering a further recursive call, then elements are inserted into the memoisation table by447

the use of consT to the result of applying the algebra. In our example this algebra is called448

knapsackA (see accompanying code). Finally, given the recursive coalgebra out_nat on the449

natural numbers, we can define knapsack, given a list of pairs of weights and values wvs,450

using the recursion scheme for dynamorphisms:451

Example knapsack wvs : Ext (dyna (knapsackA wvs) out_nat).

The full extracted code coming from this specification is available in the artefact accompanying452

this paper, and an interested reader can check that simple inlining would produce the following:453

let knapsack wvs x = let (y, _) = (let rec f x0 =

if x0=0 then
{ lFix_out = {shape = Uint63.of_int (0); cont = fun _ -> f 0 } }

else let fn := f (x0-1) in { lFix_out = {

shape = (max_int (Uint63.of_int (0)) (memo_knap fn wvs), sx);

cont = fun _ -> fn } }

in f x).lFix_out.shape in y

Note that in the extracted code, the recursive calls to f build the memoisation table, and454

that this memoisation table is used to compute the intermediate results in memo_knap, which455

is finally discarded to produce the final result.456

4.3 Shortcut Deforestation457

We now showcase the shortcut deforestation optimisation on lists. This is used to remove458

the creation of intermediate data structures by fusing multiple recursive traversals into one.459

For example, we can use it to show that the following code from Takano and Meijer [27],460

which uses three different hylomorphisms, can be fused into one:461

Definition sf1 (f : A ~> B) ys : Ext (length \o Lmap f \o append ys).

Here sf1 is the composition of length, Lmap f and append ys which are, in particular, cata-462

morphisms. To prove our goal we use the so called acid rain theorem [27] which states that463

given a parametric function of the following type:464

s : forall A. (App F A -> A) -> (App F A -> A)

we can conclude, by parametricity, that the following equation holds:465

D. Castro Perez et al. 23:15

hylo a l_out \o hylo (s l_in) c =e hylo (s a) c

Unfortunately, this is not provable in Coq without adding the parametricity axiom [17], but466

we can prove it for specific functors, e.g. the functor of lists.467

We prove a specialised version of the acid rain theorem that fuses hylomorphisms defined468

in terms of the following function tau that maps list algebras to list algebras. This essentially469

is a function on lists which uses the algebra for both the recursive step and for the base case470

where it is used in the hylomorphism to continue the recursion:471

Definition tau (l : list A) (a : Alg (ListF A) B) : App (ListF A) B -> B :=

fun x => match x with | MkCont sx kx => match sx with
| s_nil => fun _ => (hylo a ilist_coalg) l

| s_cons h => fun kx => a (MkCont (s_cons h) kx)

end kx end.

Our acid rain theorem is stated as follows:472

hylo a l_out \o hylo (tau l l_in) c =e hylo (tau l a) c

Now we use tau to define the append function as follows:473

Definition append (l : list A) := hylo (tau l l_in) ilist_coalg.

Here, ilist_coalg is a recursive coalgebra from Coq lists to the ListF container. The acid474

rain theorem allows us to fuse this definition of append with the maps Lmap and length which475

is the optimisation we wanted in the first place. The following is the extracted OCaml code476

from the optimised program:477

let rec sf1 f ys =

function | [] -> let rec f0 = function
| [] -> (Uint63.of_int (0))

| _ :: t -> add (Uint63.of_int (1)) (f0 t)

in f0 ys

| _ :: t -> add (Uint63.of_int (1)) (sf1 f ys t)

Notice how the Lmap is optimised away and the function length is applied to both the478

arguments of the append function.479

As a second example, we prove that length fuses with the naive quadratic reverse function:480

Definition sf2 : Ext (length \o reverse).

This code extracts to the optimised length function on the input list:481

let rec ex2 = function | [] -> (Uint63.of_int (0))

| _ :: t -> add (Uint63.of_int (1)) (ex2 t)

Here by fusing the hylomorphism for the reverse function with the length function we obtain482

the original length function.483

5 Related Work484

There is existing prior work on formalising recursion schemes in a proof assistant. Tesson et485

al. demonstrated the efficacy of leveraging Coq to establish an approach for implementing a486

robust system dedicated to verifying the correctness of program transformations for functions487

that manipulate lists [28]. Murata and Emoto went further and formalised recursion schemes488

in Coq [21]. Their development does not include hylomorphisms and dynamorphisms, and489

ITP 2025

23:16 Program Optimisations via Hylomorphisms for Extraction of Executable Code

relies on the functional extensionality axiom, as well as further extensionality axioms for490

each coinductive datatype that they use. They do not discuss the extracted code from their491

formalisation. Mu et al. formalise hylomorphisms in Agda, and can do relational program492

transformation [20]. Their paper does not discuss extracting runnable code from their493

encodings, and they do not seem to formalise hylomorphisms in terms of generic functors494

and datatypes.495

Larchey-Wendling and Monin encode recursion schemes in Coq, by formalising compu-496

tational graphs of algorithms [18]. Their work does not focus on encoding higher-order497

generic recursion schemes, and proving their algebraic laws. Castro-Perez et al. [7] encode498

the laws of hylomorphisms as part of a type system to calculate parallel programs from499

specifications. Their work focuses on parallelism, and they do not formalise their approach500

in a proof assistant, and they treat the laws of hylomorphisms as axioms.501

Abreu et al. [2] encode divide-and-conquer computations in Coq, using a recursion scheme502

in which termination is entirely enforced by its typing. This is a significant advance, since503

it completely avoids the need for termination proofs. Their work differs from ours in that504

they require the functional extensionality axiom, and the use of impredicative Set. The505

authors justify well the use of impredicative Set and its compatibility with the functional506

extensionality axiom. In contrast, our development remains entirely axiom-free, and we retain507

the ability to extract natural-looking OCaml code. Through experiments, we found that508

code extracted from their formalisation makes heavy use of unsafe casts and has a generally509

complex structure that may be hard to understand and integrate with other external code.510

Due to the great benefit of entirely avoiding termination proofs, it would be interesting to511

extend their approach to improve code extraction.512

The problem of nonstructural recursion (including divide-and-conquer algorithms) is513

well-studied [5]. Certain functions that are not structurally recursive can be reformulated514

using a nonstandard approach to achieve structural recursion. For example, the mergesort in515

Coq’s standard library uses an “explicit stack of pending merges” in order to avoid issues516

with nonstructural definitions. There is a major downside, however; as noted by Abreu et al.,517

the result is “barely recognisable as a form of mergesort” [2]. There are common approaches518

in Coq to deal with termination [26, 24], but none of these approaches address program519

calculation techniques, and the mechanisation of fusion laws.520

The fusion laws that we formalise in this paper are applied in the more general context521

of compilers for functional programming languages. Fusion has been applied to recursive522

tree traversals, in order to reduce the number of times each section of the tree must be523

visited. Research has demonstrated that this sort of fusion can be performed automatically524

by a compiler [22]. The correctness of tree traversal fusion has been verified mechanically in525

Coq [9], but the authors do not formalise unfolds and hylomorphisms.526

Another related family of transformations are worker/wrapper transformations [13], which527

have been used in the context of optimising compilers, and have been mechanised in Agda [23].528

This technique has been applied to improving the performance of programs defined using folds529

via fusion [16]. Their work does not focus on the use of an interactive proof assistant, but530

rather on the manual use of equational reasoning to re-write programs and on the automatic531

transformation of functional programs by a compiler.532

6 Conclusions and Future Work533

In this work we mechanise hylomorphisms and their algebraic laws and use them to perform534

program calculation and optimisations. The resulting programs can be later extracted into535

D. Castro Perez et al. 23:17

idiomatic and runnable code. Our mechanisation is fully axiom-free. This formalisation536

allows us to use Coq as a framework for program calculation in a way that is close to common537

practice in pen and paper program calculation proofs. This implies that every rewriting538

step is the result of applying a formal, machine-checked proof that the resulting program is539

extensionally equal to the input specification.540

As part of the future improvements, we will study how to mitigate the problem of setoids.541

At the moment, we use a short ad-hoc tactic that is able to automatically discharge many of542

these proofs in simple settings. We will study the more thorough and systematic use of proof543

automation for proper morphisms. Generalised rewriting in proofs involving setoids tends to544

be quite slow, due to the large size of the terms that need to be rewritten. Sometimes, this545

size is hidden in implicit arguments and coercions. We will study alternative formulations to546

try to improve the performance of the rewriting tactics (e.g. canonical structures). Currently,547

Coq is unable to inline a number of trivially inlineable definitions. We will study alternative548

definitions, or extensions to Coq’s code extraction mechanisms to force the full inlining of549

all container code that is used in hylomorphisms. Finally, proving termination still remains550

a hurdle. In our framework this reduces to proving that the anamorphism terminates in551

all inputs, and we provide a convenient connection to well-founded recursion. Furthermore,552

recursive coalgebras compose with natural transformations, which allows the reuse of a553

number of core recursive coalgebras. A possible interesting future line of work is the use of554

the approach by Abreu et al. [2] in combination with ours to improve code extraction from555

divide-and-conquer computations whose termination does not require an external proof.556

ITP 2025

23:18 Program Optimisations via Hylomorphisms for Extraction of Executable Code

References557

1 Michael Gordon Abbott, Thorsten Altenkirch, and Neil Ghani. Containers: Constructing558

strictly positive types. Theor. Comput. Sci., 342(1):3–27, 2005. URL: https://doi.org/10.559

1016/j.tcs.2005.06.002, doi:10.1016/J.TCS.2005.06.002.560

2 Pedro Abreu, Benjamin Delaware, Alex Hubers, Christa Jenkins, J. Garrett Morris, and Aaron561

Stump. A type-based approach to divide-and-conquer recursion in coq. Proc. ACM Program.562

Lang., 7(POPL), jan 2023. doi:10.1145/3571196.563

3 Jirí Adámek, Stefan Milius, and Lawrence S. Moss. On well-founded and recursive coalgebras.564

CoRR, abs/1910.09401, 2019. URL: http://arxiv.org/abs/1910.09401, arXiv:1910.09401.565

4 Richard S. Bird and Oege de Moor. The algebra of programming. In Manfred Broy, editor, Pro-566

ceedings of the NATO Advanced Study Institute on Deductive Program Design, Marktoberdorf,567

Germany, pages 167–203, 1996.568

5 Ana Bove, Alexander Krauss, and Matthieu Sozeau. Partiality and recursion in interactive569

theorem provers an overview. Mathematical Structures in Computer Science, 26(1):3888, 2016.570

doi:10.1017/S0960129514000115.571

6 Venanzio Capretta, Tarmo Uustalu, and Varmo Vene. Recursive coalgebras from comonads.572

In Jirí Adámek and Stefan Milius, editors, Proceedings of the Workshop on Coalgebraic573

Methods in Computer Science, CMCS 2004, Barcelona, Spain, March 27-29, 2004, volume574

106 of Electronic Notes in Theoretical Computer Science, pages 43–61. Elsevier, 2004. URL:575

https://doi.org/10.1016/j.entcs.2004.02.034, doi:10.1016/J.ENTCS.2004.02.034.576

7 David Castro-Perez, Kevin Hammond, and Susmit Sarkar. Farms, pipes, streams and reforest-577

ation: reasoning about structured parallel processes using types and hylomorphisms. In Proc.578

of the 21st ACM SIGPLAN International Conference on Functional Programming, ICFP 2016,579

page 417. ACM, 2016. doi:10.1145/2951913.2951920.580

8 Nils Anders Danielsson, John Hughes, Patrik Jansson, and Jeremy Gibbons. Fast and loose581

reasoning is morally correct. In J. Gregory Morrisett and Simon L. Peyton Jones, editors,582

Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming583

Languages, POPL 2006, Charleston, South Carolina, USA, January 11-13, 2006, pages584

206–217. ACM, 2006. doi:10.1145/1111037.1111056.585

9 Eleanor Davies and Sara Kalvala. Postcondition-preserving fusion of postorder tree trans-586

formations. In Proceedings of the 29th International Conference on Compiler Construction,587

CC 2020, page 191200, New York, NY, USA, 2020. Association for Computing Machinery.588

doi:10.1145/3377555.3377884.589

10 Yannick Forster, Matthieu Sozeau, and Nicolas Tabareau. Verified Extraction from Coq590

to OCaml. working paper or preprint, November 2023. URL: https://inria.hal.science/591

hal-04329663.592

11 Jeremy Gibbons. The third homomorphism theorem. Journal of Functional Programming,593

6(4):657–665, 1996. Earlier version appeared in C. B. Jay, editor, Computing: The Australian594

Theory Seminar, Sydney, December 1994, p. 62–69. URL: http://www.cs.ox.ac.uk/people/595

jeremy.gibbons/publications/thirdht.ps.gz.596

12 Jeremy Gibbons. The school of squiggol. In Formal Methods. FM 2019 International Workshops,597

pages 35–53, Cham, 2020. Springer International Publishing.598

13 Andy Gill and Graham Hutton. The worker/wrapper transformation. Journal of Functional599

Programming, 19, 03 2009. doi:10.1017/S0956796809007175.600

14 Ralf Hinze, Thomas Harper, and Daniel W. H. James. Theory and practice of fusion. In601

Jurriaan Hage and Marco T. Morazán, editors, Implementation and Application of Functional602

Languages - 22nd International Symposium, IFL 2010, Alphen aan den Rijn, The Netherlands,603

September 1-3, 2010, Revised Selected Papers, volume 6647 of Lecture Notes in Computer604

Science, pages 19–37. Springer, 2010. doi:10.1007/978-3-642-24276-2_2.605

15 Ralf Hinze, Nicolas Wu, and Jeremy Gibbons. Conjugate hylomorphisms - or: The mother of all606

structured recursion schemes. In Sriram K. Rajamani and David Walker, editors, Proceedings607

of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming608

https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1016/J.TCS.2005.06.002
https://doi.org/10.1145/3571196
http://arxiv.org/abs/1910.09401
https://arxiv.org/abs/1910.09401
https://doi.org/10.1017/S0960129514000115
https://doi.org/10.1016/j.entcs.2004.02.034
https://doi.org/10.1016/J.ENTCS.2004.02.034
https://doi.org/10.1145/2951913.2951920
https://doi.org/10.1145/1111037.1111056
https://doi.org/10.1145/3377555.3377884
https://inria.hal.science/hal-04329663
https://inria.hal.science/hal-04329663
https://inria.hal.science/hal-04329663
http://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/thirdht.ps.gz
http://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/thirdht.ps.gz
http://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/thirdht.ps.gz
https://doi.org/10.1017/S0956796809007175
https://doi.org/10.1007/978-3-642-24276-2_2

D. Castro Perez et al. 23:19

Languages, POPL 2015, Mumbai, India, January 15-17, 2015, pages 527–538. ACM, 2015.609

doi:10.1145/2676726.2676989.610

16 Graham Hutton, Mauro Jaskelioff, and Andy Gill. Factorising folds for faster functions. J.611

Funct. Program., 20(34):353373, July 2010. doi:10.1017/S0956796810000122.612

17 Chantal Keller and Marc Lasson. Parametricity in an Impredicative Sort. In Patrick Cé-613

gielski and Arnaud Durand, editors, Computer Science Logic (CSL’12) - 26th International614

Workshop/21st Annual Conference of the EACSL, volume 16 of Leibniz International Proceed-615

ings in Informatics (LIPIcs), pages 381–395, Dagstuhl, Germany, 2012. Schloss Dagstuhl –616

Leibniz-Zentrum für Informatik. URL: https://drops-dev.dagstuhl.de/entities/document/617

10.4230/LIPIcs.CSL.2012.381, doi:10.4230/LIPIcs.CSL.2012.381.618

18 Dominique Larchey-Wendling and Jean-François Monin. The braga method: Extracting619

certified algorithms from complex recursive schemes in coq. In PROOF AND COMPUTATION620

II: From Proof Theory and Univalent Mathematics to Program Extraction and Verification,621

pages 305–386. World Scientific, 2022.622

19 Akimasa Morihata, Kiminori Matsuzaki, Zhenjiang Hu, and Masato Takeichi. The third623

homomorphism theorem on trees: downward & upward lead to divide-and-conquer. In Zhong624

Shao and Benjamin C. Pierce, editors, Proceedings of the 36th ACM SIGPLAN-SIGACT625

Symposium on Principles of Programming Languages, POPL 2009, Savannah, GA, USA,626

January 21-23, 2009, pages 177–185. ACM, 2009. doi:10.1145/1480881.1480905.627

20 Shin-Cheng Mu, Hsiang-Shang Ko, and Patrik Jansson. Algebra of programming in agda:628

Dependent types for relational program derivation. J. Funct. Program., 19(5):545–579, 2009.629

doi:10.1017/S0956796809007345.630

21 Kosuke Murata and Kento Emoto. Recursion schemes in coq. In Anthony Widjaja Lin, editor,631

Programming Languages and Systems, pages 202–221, Cham, 2019. Springer International632

Publishing.633

22 Laith Sakka, Kirshanthan Sundararajah, and Milind Kulkarni. Treefuser: a framework for634

analyzing and fusing general recursive tree traversals. Proc. ACM Program. Lang., 1(OOPSLA),635

October 2017. doi:10.1145/3133900.636

23 Neil Sculthorpe and Graham Hutton. Work it, wrap it, fix it, fold it. Journal of Functional637

Programming, 24(1):113127, 2014. doi:10.1017/S0956796814000045.638

24 Matthieu Sozeau. Program-ing finger trees in coq. In Ralf Hinze and Norman Ramsey,639

editors, Proceedings of the 12th ACM SIGPLAN International Conference on Functional640

Programming, ICFP 2007, Freiburg, Germany, October 1-3, 2007, pages 13–24. ACM, 2007.641

doi:10.1145/1291151.1291156.642

25 Matthieu Sozeau. A new look at generalized rewriting in type theory. J. Formaliz. Reason.,643

2(1):41–62, 2009. URL: https://doi.org/10.6092/issn.1972-5787/1574, doi:10.6092/ISSN.644

1972-5787/1574.645

26 Matthieu Sozeau and Cyprien Mangin. Equations reloaded: high-level dependently-typed646

functional programming and proving in coq. Proc. ACM Program. Lang., 3(ICFP):86:1–86:29,647

2019. doi:10.1145/3341690.648

27 Akihiko Takano and Erik Meijer. Shortcut deforestation in calculational form. In Proceedings649

of the Seventh International Conference on Functional Programming Languages and Computer650

Architecture, FPCA ’95, page 306313, New York, NY, USA, 1995. Association for Computing651

Machinery. doi:10.1145/224164.224221.652

28 Julien Tesson, Hideki Hashimoto, Zhenjiang Hu, Frédéric Loulergue, and Masato Takeichi.653

Program calculation in coq. In Michael Johnson and Dusko Pavlovic, editors, Algebraic654

Methodology and Software Technology, pages 163–179, Berlin, Heidelberg, 2011. Springer655

Berlin Heidelberg.656

29 Philip Wadler. Deforestation: Transforming programs to eliminate trees. Theor. Comput. Sci.,657

73(2):231–248, 1990. doi:10.1016/0304-3975(90)90147-A.658

30 Glynn Winskel and Mogens Nielsen. Models for concurrency. In Handbook of Logic in659

Computer Science. Oxford University Press, 05 1995. arXiv:https://academic.oup.com/book/660

ITP 2025

https://doi.org/10.1145/2676726.2676989
https://doi.org/10.1017/S0956796810000122
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2012.381
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2012.381
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2012.381
https://doi.org/10.4230/LIPIcs.CSL.2012.381
https://doi.org/10.1145/1480881.1480905
https://doi.org/10.1017/S0956796809007345
https://doi.org/10.1145/3133900
https://doi.org/10.1017/S0956796814000045
https://doi.org/10.1145/1291151.1291156
https://doi.org/10.6092/issn.1972-5787/1574
https://doi.org/10.6092/ISSN.1972-5787/1574
https://doi.org/10.6092/ISSN.1972-5787/1574
https://doi.org/10.6092/ISSN.1972-5787/1574
https://doi.org/10.1145/3341690
https://doi.org/10.1145/224164.224221
https://doi.org/10.1016/0304-3975(90)90147-A
https://arxiv.org/abs/https://academic.oup.com/book/0/chapter/421962123/chapter-pdf/52352653/isbn-9780198537809-book-part-1.pdf
https://arxiv.org/abs/https://academic.oup.com/book/0/chapter/421962123/chapter-pdf/52352653/isbn-9780198537809-book-part-1.pdf
https://arxiv.org/abs/https://academic.oup.com/book/0/chapter/421962123/chapter-pdf/52352653/isbn-9780198537809-book-part-1.pdf

23:20 Program Optimisations via Hylomorphisms for Extraction of Executable Code

0/chapter/421962123/chapter-pdf/52352653/isbn-9780198537809-book-part-1.pdf, doi:10.661

1093/oso/9780198537809.003.0001.662

https://arxiv.org/abs/https://academic.oup.com/book/0/chapter/421962123/chapter-pdf/52352653/isbn-9780198537809-book-part-1.pdf
https://arxiv.org/abs/https://academic.oup.com/book/0/chapter/421962123/chapter-pdf/52352653/isbn-9780198537809-book-part-1.pdf
https://arxiv.org/abs/https://academic.oup.com/book/0/chapter/421962123/chapter-pdf/52352653/isbn-9780198537809-book-part-1.pdf
https://doi.org/10.1093/oso/9780198537809.003.0001
https://doi.org/10.1093/oso/9780198537809.003.0001
https://doi.org/10.1093/oso/9780198537809.003.0001

	1 Introduction
	2 Recursion Schemes
	2.1 Elements of Category Theory
	2.2 Algebras and Catamorphisms
	2.3 Coalgebras and Anamorphisms
	2.4 Recursive Coalgebras and Hylomorphism
	2.5 Polynomial Functors

	3 Formalising Recursion Schemes
	3.1 Mechanising Extractable Container Functors
	3.2 Algebras and Catamorphisms for Containers
	3.3 Coalgebras and Anamorphisms
	3.4 Mechanising Hylomorphisms
	3.4.1 On the subtype of finite elements
	3.4.2 Proving Correctness

	4 Extraction
	4.1 Sorting Algorithms
	4.1.1 Fusing a divide-and-conquer computation

	4.2 Knapsack
	4.3 Shortcut Deforestation

	5 Related Work
	6 Conclusions and Future Work

