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Abstract
These notes are meant to remind myself of some facts about Kan

extension and monads. The first part is devoted to basic definitions about
adjunctions, ends and coends, which are needed to explain the proofs later
on. The second part is on monads and Kan extensions.
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1 Adjunctions and Monads
Given two functors L : D → C and R : C → D and adjunction is an isomorphism
of homsets

b·c : C(LA,B) ∼= D(A,RB) : d·e

which is furthermore natural in A and B. Here b·c and d·e are the functions
witnessing the isomorphism. The adjunction is usually depicted as follows

C D
L

R

a

We say that that L is left adjoint and R is right adjoint and it is indicated by
L ` R. As a consequence of the isomorphism, for f : LA→ B and g : A→ RB
we have that

bfc = g ⇐⇒ f = dge

and because the isomorphism is natural we can derive the fusion laws. For
a : A′ → A, b : B → B′, f : LA→ B and g : A→ RB

R(b) · bfc = bb · fc
bfc · a = bf · L(a)c
b · dge = dR(b) · ge
dge · L(a) = dg · ae

We can also compute the fusion laws this way.

R(b) · bfc · a = bb · f · L(a)c
b · dge · L(a) = dR(b) · g · ae
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This is really all about adjunctions. All the other definitions and constructions
are equivalent to this one. Furthermore, this material is very well covered
elsewhere [2, 6, 4] so I will not be covering it further.

What is important for the sake of this notes is that an adjunction gives rise
to a monad and a comonad where RL is the monad and LR is the comonad.
The unit and counit of the adjunction are defined as follows

ηA = bidLAc
εB = didRBe

The join or multiplication of the monad µ : RLRL→ RL is defined as µ = RεL
and the cojoin or comultiplication δ : LR→ LRLR is defined as δ = LηR. The
operations of the comonad are dually defined.

1.1 Examples
For example the functor (− × X) is left adjoint to the exponential (−)X . In
particular, the following is a natural isomorphism in A and B:

·̂ : C(A×X,B) ∼= D(A,BX) : ·̌ (1)

For arrows f : A × X → B and g : A → BX the operations f̂ and ǧ are
respectively the curry and uncurry operations in functional programming.

2 Limits and Colimits
Given two objects X and Y in a category, X × Y forms the product of X and
Y . We can generalise this further. Given a functor D : I → C the limit lim←−D
is an universal object such that for every I ∈ I, there exists a projection map
lim←−DI

πI−→ DI such that for every morphism DI1
f−→ DI2 we have

πI2 = f · πI1

and furthermore any other object such as this has a unique morphism into the
limit commuting with the projections [2, 6].

The limit is right adjoint to the diagonal functor mapping every object to
the constant functor and the colimit is the left adjoint to the diagonal functor.

C CI C
lim−→ ∆

∆ lim←−

a a

We right down the isomorphisms

C(lim−→
I∈I

A(I), B) ∼= CI(A,∆B)

CI(∆A,B) ∼= C(A, lim←−
I∈I

B(I))
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2.1 Preservation and Creation of (Co)Limits
A functor H : C → D is said to preserve limits if, given a diagram F : I → C

H lim←−
I∈I

FI ∼= lim←−
I∈I

HFI

In other words, H preserves limits if the limit of the diagram obtained by
composition with H, namely HF , corresponds with the limit of F applied to
H. In particular, such a functor preserves small limits as well. A functor that
preserves small (co)limits is called (co)continuous.

As a prominent example, the covariant homset functor C(C,−) : C → Set
preserve limits

C(C, lim←−
I∈I

FI) ∼= lim←−
I∈I
C(C,FI) (2)

On the other hand, the contravariant homset functor, which may be written
as C(−, C) = Cop(C,−) : Cop → Set carries colimits over to limits in the following
sense

C(lim−→
I∈I

FI,C) ∼= lim←−
I∈I
C(FI,C) (3)

2.2 Dependent product and sum
Let us consider the set I (or the discrete category I with only identities). Then
the right adjoint to the diagonal functor is called the dependent product ΠI∈IB(I)
for some functor B : I → C and the left adjoint is called the dependent sum
ΣI∈IA(I) for some functor A : I → C.

C CI C
ΣI∈I .(−)I ∆

∆ ΠI∈I .(−)I

a a

The limit preservation (2) and colimit reverse (3) continues to hold for
dependent products and sums.

ΠI∈IC(X,A(I)) ∼= C(X,ΠI∈IA(I) (4)
C(ΣI∈IA(I), X) ∼= ΠI∈IC(A(I), X) (5)

2.2.1 Powers and CoPowers

Now we consider categories of constant functors CI and keep I as the discrete
category. The limits and colimits of these functors are called powers and copowers
which can be indicated by ΣI.A = I •A and ΠI.B = BI

C CI C
ΣI.(−) ∆

∆ ΠI.(−)

a a
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Now equations (4) and (5) in turn specialise to powers and copowers

C(X,A)I ∼= C(X,AI) (6)
C(I •A,X) ∼= C(A,X)I (7)

As a consequence of (6) and (7) we get that

C(I •A,B) ∼= C(A,B)I ∼= C(A,BI)

Now since I is the discrete category (it has no arrows) it can be regarded as a
set! Hence, the set of natural transformation betweeen to constant functors is
just the set of functions between the images of these indexed by I

CI(∆X,∆Y ) ∼= C(X,Y )I ∼= I → C(X,Y ) (8)

Note that, since I and C(X,Y ) are sets, then C(X,Y )I is the exponential object
in Set and hence it is isomorphic to I → C(X,Y ) which is the set of functions.

In Set, we have that teh copower is the product

I •A = A× I (9)

and the power is the function space

BI = I → B (10)

BI is the function space I → B.

3 Ends and Coends
Sometimes it useful to talk about limits and colimits of diagrams that have a
contravariant component additionally to a covariant one. These are functors of
type F : Cop × C → C. An example of such a functor is the exponential

F (X,Y ) = Y X

where X is the variable appearing in a contravariant position and Y is the
variable appearing in a covariant position.

The limit of this functor (if it exists) is called end and the colimit is called
coend. Consider a functor S : Cop × C → D, the end of S is the limit of S when
S is seeing as a diagram S(C,C)

S(f,C)−−−−→ S(B,C)
S(B,f)←−−−− S(B,B)∫

X
S(X,X)

S(C,C) S(B,B)

S(B,C)

S(f,C) S(B,f)
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This is though not a very precise definition since the limit needs to be defined
on a covariant functor. However, it can be shown [6, Chapter IX, Proposition 1],
that for every category C and functor S : Cop × C → D there exists a category
C§ and functor S§ : C§ → D such that∫

C

S(C,C) ∼= lim←−
C

S§C (11)

We refer the reader to the more in-depth presentations of this fact [6, 5].
Moreover, whenever S is “dummy” in the first variable, i.e. S factors through

the second projection as in

Cop × C C

D

π2

T
S

then the end coincides with the limit of T∫
C:C

S(C,C) = lim←−
C:C

TC (12)

Ends behave similarly to universal quantification. For a functor S : Cop ×
C ×Dop ×D → E∫

C:C

∫
D:D

S(C,C,D,D) ∼=
∫
D:C

∫
C:D

S(C,C,D,D) (13)

This property is known as the exchange rule which for integrals it corresponds
to the Fubini rule [5].

3.1 Preservation of Ends
A functor H : C → D is said to preserve the end of a functor S : Cop × C → D

H

∫
C∈C

S(C,C) =

∫
C∈C

HS(C,C)

In other words, when w : e→̈S is an end of S and Hw : He→̈HS is an end for
HS.

For example, as it was the case for the limits and colimits, the homset functor
preserves ends in the following way

C(X,
∫
C:C

S(C,C)) =

∫
C:C

(C(X,S(C,C))) (14)

and reserves ends into coends

C(
∫ C:C

S(C,C), X) =

∫
C:C

(C(S(C,C)), X) (15)

6



3.2 Natural Transformations and Ends
Natural transformations are examples of ends. Given two functors F,G : D → C,
the end of the homset functor CD(F−, G−) is the set of natural transformations
from F to G

Nat(F,G) =
∫
D:D
C(FD,GD) (16)

4 The Yoneda Lemma
In this section we are going to assume a locally small category C. This is because
we need homsets in this category to extend to functors (in fact to profunctors)
C(−,−) : Cop × C → Set. Hence we need homsets to be actual sets. Now,
instantiating the contravariant argument of the homset functor yields a covariant
hom-functor C(X,−) : C → Set which maps an arrow f : A→ B to a function

C(X, f) : C(X,A)→ C(X,B)

between sets of functions, in particular C(X, f) is defined as g 7→ f ◦ g. Further-
more, note that (4) is natural in X, therefore, every such natural transformation
is obtained as the image of C(−, f) for some f hence the following isomorphism
holds

C(A,B) ∼= C(X,A)→ C(X,B)

The covariant Yoneda lemma generalises this situation by abstracting out the
functor C(A,−) into a generic functor F : C → Set. Assume a locally small
category C, then for all covariant functors F : C → Set, we have the following
isomorphism of sets

FC ∼= C(C,−)⇒ F

The functions witnessing the isomorphism are given by φ(x, g) = F (g)(x) and
its inverse ψ(i) = iC(idC).

The hom-functor is a very particular one enjoying a myriad of properties.
In particular, notice that, since Cat is cartersian closed, every functor of type
Cop× → Set corresponds to a functor of type C → SetC

op
. In particular, the

hom-functor C(−,−) can also be thought of a functor of this type and it is called
the Yoneda embedding:

Definition 4.1 (The Yoneda Embedding). The curried transpose of the hom-
functor is denoted by よ : C → SetC

op
, pronounced the Yoneda embedding. Also,

we are going to denote C(−, C) for some C as よC and C(−, f) for some f as
よf .

Now since by definition of opposite categories C(−, C) is equal to Cop(C,−)
we can state the Yoneda lemma as follows:

Lemma 4.1. Let Cop be a locally small category and let F : Cop → Set be a
contravariant functor then the following isomorphism holds:

FC ∼= SetC
op
(よC , F ) (17)

7



where SetC
op
(よC , F ) are the natural transformation from C(−, C) to F .

The fact that よ is an embedding means that the y is a fully faithful functor,
i.e. it is respectively surjective and injective on arrows. This leads to the Yoneda
principle of indirect proof:

Lemma 4.2 (Yoneda Priciple). Let C be a locally small category, then for all
X,Y : C,

X ∼= Y if and only ifよX
∼=よY

The left-to-right is by definition of functor, the other direction falls out from
functoriality of C(−,−) and from the fact this is a full functor.

Moreover, using the functorial action of よ and since よ is faithful we have
that

f = g if and only ifよf =よg (18)

The left-to-right is by the fact that the functor C(−,=) is well-defined (in both
variables) and the other direction is from faithfullness.

4.1 Ninja Yoneda Lemmas
Using the coend calculus we can of course derive a multitude of equivalent
formulations of Yoneda. Since these are instances of Yoneda in disguise they
have been named Ninja Yonedas [5].

Lemma 4.3 (Ninja Yoneda). Let Cop be a locally small category and F : Cop →
Set then the following isomorphisms hold:∫

X:C
Set(C(X,C), FX) ∼= FC

∫ X:C
C(X,C)× FX ∼= FC

Proof. The proof of the left-hand side is easy application of (4)∫
X:C

Set(C(X,C), FX ∼= Cop(−, C)⇒ F− ∼= FC

The right-hand side needs some more work. We first prove the following isomor-
phism

Set(
∫ X:C

Cop(X,C)× FX, Y ) ∼= Set(FC, Y )

for all sets Y . Then by the Yoneda principle (18) using the homset functor
Set(−, Y ) : Setop → Set we derive

Set(
∫ X:C

C(X,C)× FX ∼= FC

8



as wanted. We now prove (4.1):

Set(
∫ X:C

C(X,C)× FX, Y )

∼= { By application of (4) }∫
X:C

Set(C(X,C)× FX, Y )

∼= { Using the fact that Set is cartesian closed }∫
X:C

Set(C(X,C),Set(FX, Y ))

∼= { By applying (4) }
C(−, C)⇒ Set(F−, Y )
∼= { Using the Yoneda lemma 4.1 }
Set(FC, Y )

An immediate consequence of the Yoneda lemma is its instantiation to
second-order functors.

Lemma 4.4. Let F : CD → Set be a Set-valued functor from the category of
functors D → C and let CD be a locally small category and let H be an object in
CD. Then we can state the second-order Yoneda Lemma by just instantiating
(4.1):

GH ∼= CD(H,−)⇒ G

By Equation(16) this equation becomes

GH ∼=
∫
F

CD(H,F )⇒ GF (19)

Let now GH = HX for some X : D, then

HX ∼=
∫
F

CD(H,F )⇒ FX (20)

This will be used for the proof of traversals in Section 10.

4.2 The mini Yoneda Lemma for Type Theorists
Say that you have a typed language with a unary constructor R which has the
following typing rule

Γ ` t : A
Γ ` R(t) : B

(21)
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The task is to give a semantic interpretation [[·]] for the language by induction
on the typing judgment Γ ` t : A such that terms are interpreted as morphisms
[[Γ]]

[[t]]−−→ [[A]], assuming for course [[·]] is also defined separately for contexts and
types.

In order to interpret (21), as mentioned above, we do induction on the typing
judgment so that, by induction, we know there exists a morphism [[Γ]]

[[t]]−−→ [[A]]

and we have to construct a morphism [[Γ]]
[[R(t)]]−−−→ [[B]].

In the remainder of this section we remove the semantics brackets for simplic-
ity, for example, assuming A be interpretation of [[A]], t : Γ→ A the interpretation
of t an so on.

In this situation it can be quite tricky sometimes to figure out what this
moprhism should be since there is some plumbing needed to pass around the
context. A particular instantiation of the Yoneda lemma states that given a
morphism t : Γ

t−→ A and a morphism R : A → B there is a canonical way to
construct a morphism Γ

R(t)−−−→ B.
To show this we instantiate the Yoneda lemma 4.1 by setting F = C(−, B).

Then for all objects A : Cop we have

C(A,B) ∼= C(−, A)⇒ C(−, B)

Let R : A→ B be the interpretation of R then, one side of the isomorphism is
φ(R, t) = F (t)(R) = C([[t]], B)(R). In other words, the interpretation of R(t) is
simply R ◦ t.

4.3 Exponentials in Presheaf Categories
Say we are working in the presheaf category over C, namely SetC

op
.

We want to find out what the exponential in this category is. It may be
tempting to define the exponential as the natural transformations, but this is not
what is happening. If the exponential existed then it would be an object in SetC

op

and at this point we would be able to apply the Yoneda lemma instantiating
F with AB in (4.1). We then calculate as follows using properties of ends and
exponentials:

BA(X) ∼= { Yoneda Lemma (4.1) }
C(−, X)⇒ BA

∼= { Exponentials in functor categories }
C(−, X)×A⇒ B
∼= { Ends as natural transformations (16) }∫ C:C

Set(C(C,X)×A(C), B(C))

Thus the exponential at stage X is the set natural transformations from the
functor A to the functor B, but restricted to the components C such that there
exists at least one arrow C → X.
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5 Kan Extensions
Consider the category C formed by these objects and arrows

A→ C ← B

and the category D formed by the following objects and arrows

D A

B C

Clearly, C is a full subcategory of D, indicated by the presence of the inclusion
functor i : C ↪→ D since A,B and C contained in D along with their associated
arrows. Now given a functor F : C → E how can we extend the functor to
the category D such that this functor agrees with F on the objects and arrows
that already belong to C? Well notice that this functor needs to send D to an
object GD which has arrows GD → FX = GX for each X ∈ C for which there
is an arrow D → X. A cone for the following diagram will do since D has an
arrow into every object of C, but since we will need to prove this object is the
“maximal” one we choose the limiting cone of this diagram which is the pullback
P

P FA

FB FC

y

Now we need to ensure that this assignment is the “largest” one we could have
picked. To do this we pick a generalised element of F , namely, for a functor
H : D → E and for a generalised element f : H ◦ i⇒ F we need to show there
exists a unique map H ⇒ G such that on objects in C this map agrees with f1.
Now, for X ∈ C, this is just f since GX = FX. We are left to show that there
exists a map HD → GD = P , but this is easy to see since HD is a cone for the
functor F

HD HA P FA

HB HC FB FC

y

fA

fB fC

Let us generalise this a bit further. Let C ↪→ D be a full subcategory of D.
Let i : C → D be the inclusion functor and let a functor F : C → E . We want to
extend this functor to a functor G : D → E such that for every object X ∈ C, G
sends X to FX.

1For the attentive reader, this conditions is the universal property of the counit required for
G to be the right adjoint to the functor − ◦ i
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Since G has to be a functor we need for every morphism Y → Y ′ in D to
define what the functorial action of G is. Now let us restrict to the case when
Y ′ is an X ∈ C. When Y ∈ D, but Y 6∈ C, for every morphism Y → X in D, the
functorial action of G has to be of type GY → FX, hence we define GY has
the object that has morphisms into every object FX that has a map Y → X.
In particular, we want to take the universal such cone which is the limit of a
functor F ◦ π1 : Y /i→ EC where Y /i is the comma category formed of triples
(Y ∈ D, X ∈ C, f : Y → iX) and π is the projection functor π : Y /i→ C

GY = lim←−
(Y,X,f :Y→iX)

(F ◦ π)(Y,X, f : Y → iX) = lim←−
(Y,X,f :Y→X)

FX

By (12) and since this functor is covariant this limit is isomorphic to the following
end formula

GY ∼=
∫
(Y,X,f :Y→X)

FX

which is the end of the functor F ◦ π ◦ π2.

5.1 Kan Extensions
Consider a reindexing functor J : C → D and define the functor −◦J : ED → EC
also named AppJ .

We want to find out whether AppJ has a left and right adjoint. We call its
left and right adjoint LanJ and RanJ respectively.

EC ED EC
AppJ LanJ

RanJ AppJ

a a

Now because LanJ is the left adjoint and RanJ to be the right one we would
expect the following to be a natural isomorphisms

ED(LanJA,B) ∼= EC(A,AppJB) EC(AppJA,B) ∼= ED(A,RanJB)

In the MacLane [6] he is defining the right Kan extension and the proving it
is the right adjoint. Here we take a different approach. By using the Yoneda
lemma we derive the right adjoint which is unique up to isomorphism so it must
be the right Kan extension. This proof is taken form Hinze’s work on generic
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programming [4]. Here I have made it a bit more precise.

EC(AppJA,B) = { Homsets in the exponential category are natural transformations }
Nat(AppJA,B)
∼= { Natural transformations are ends (16) }∫
X:C
E(AJX,BX)

∼= { Yoneda with E(A−, BX) }∫
X:C

Nat(D(−, JX), E(A−, BX))

∼= { by (16) }∫
X:C

∫
Y :D
D(Y, JX)→ E(AY,BX)

∼= { by (8) }∫
X:C

∫
Y :D
E(AY,BX)D(Y,JX)

∼= { by (6) }∫
X:C

∫
Y :D
E(AY,BXD(Y,JX))

∼= { by (13) }∫
Y :D

∫
X:C
E(AY,BXD(Y,JX))

∼= { Homsets preserve ends (14) }∫
Y :D
E(AY,

∫
X:C

BXD(Y,JX))

∼= { Natural transformation are ends (16) }

Nat(A−,
∫
X:C

BXE(−,JX))

∼= { Homsets in the exponential category are natural transformations }

ED(A−,
∫
X:C

BXE(−,JX))

For all functors J : C → D, A : C → E and B : D → E

RanJAY =

∫
X∈C

ΠD(Y,JX)AX (22)

We now compute the left Kan extension. I could not find this proof is not
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in [4, 6].

EC(A,AppJB) = A⇒ AppJB
∼= { Natural transformations are ends (16) }∫
X:C
E(AX,BJX)

∼= { by Yoneda with E(AX,B−) }∫
X:C
D(JX,−)⇒ E(AX,B−)

∼= { Natural transformations are ends(16) }∫
X:C

∫
Y :D
D(JX, Y )→ E(AX,BY )

∼= { The set functions space is a power (8) }∫
X:C

∫
Y :D
E(AX,BY )D(JX,Y )

∼= { Homsets revert powers into copowers (7) }∫
X:C

∫
Y :D
E(D(JX, Y ) •AX,BY )

∼= { Switching over ends (13) }∫
Y :D

∫
X:C
E(D(JX, Y ) •AX,BY )

∼= { Homsets reverse ends into coends (15) }∫
Y :D
E(

∫ X:C
D(JX, Y ) •AX,BY )

∼= { Natural transformations are ends (16) }

Nat(
∫ X:C

D(JX,−) •AX,B)

= ED(
∫ X:C

D(JX,−) •AX,B)

Now by looking at what we have got we define the left Kan extension as a functor
parametrised by A

LanJAY =

∫ X∈C
D(JX, Y ) •AX (23)

When D and E are the category Set, the left Kan extension can be rewritten as
follows:

LanJAY =

∫ X∈C
(JX → Y )×AX (24)

by the fact that, in Set, copowers are products (9) and homsets are exponentials.
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5.2 Yoneda as Kan Extensions
Now that we know a bit more about Kan extensions and their definitions we
can revisit the Yoneda lemma.

Lemma 5.1. If E is complete and C is small then for all functors F : C → E we
have the following isomorphism:

F ∼= RanIdF

Proof. By direct consequence of the adjunction AppId a RanId we have the
following natural isomorphism

EC(AppIdG,F )
∼= EC(G,RanIdF )

Notice that, by definition of AppId, we have EC(AppIdG,F ) = EC(G,F ) which
means the previous statement can be rewritten as

EC(G,F ) ∼= EC(G,RanIdF )

Notice that the isomorphism above is natural in both G and F and, in particular,
in G, hence we can rewrite the previous isomorphism as follows using the Yoneda
embedding:

よF
∼=よRanIdF

At this point, by the fact that the Yoneda embedding is fully faithful (Lemma 4.2)
we have

F ∼= RanIdF

concluding the proof.

Yoneda in the Presheaves Case For presheaf categories over a small category
C we could use Lemma 5.1 since Set is complete. However, it is useful to prove
the result again using the ninja Yoneda lemma which holds since C is also locally
small. We compute as follows:

FC ∼=
∫
X:C

Set(C(C,X), FX)

{ The homset in Set is the function space }

∼=
∫
X:C
C(C,X)→ FX

{ The function space is the power, with C(C,X) seeing as a discrete category }

∼=
∫
X:C

FXC(C,X)

{ By (22) }
∼= RanIdFC
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5.3 CoYoneda as Kan Extensions
Lemma 5.2 (CoYoneda). Let E be cocomplete and C be small. Then for all
functors F : C → E the following isomorphism holds:

F ∼= LanIdF

Proof. Consider the adjunction LanId a AppId given by the left Kan extension.
From the adjunction we know that the following isomorphism is natural in both
F and G:

EC(LanIdF,G) ∼= EC(F,AppIdG)

By definition of AppId we know that EC(F,G ◦ Id) = EC(F,G) . Hence, we
rewrite the above isomorphism using the Yoneda embedding:

よ(LanIdF ) ∼=よ(F )

By (4.2) this implies
LanIdF ∼= F

which concludes the computation.

Remark. When F : Cop → Set this is a again a trivial consequence of the ninja
Yoneda Lemma 4.3.

5.4 Left and Right Shifts
Left and right shifts are just particular cases of Kan extensions where C is 1. So
now the reindexing functor is just an object D : 1→ D. If we now start abusing
some notation settingD to mean D(∗) we have AppDH = H◦D = HD(∗) = HD

E ED E
−D LshD

RshD −D

a a

At this point the natural isomorphisms induces by the adjunctions are as follows

ED(LshDF,G) ∼= E(F,GD) E(FD,G) ∼= ED(F,RshJG)

What is interesting to note is that left and right Kan extensions simplify into
left and right shifts

LshDFY = D(D,Y ) • F RshDGY = GD(Y,D)

6 Distributive Laws, (Co)Algebras and Kan Ex-
tensions

Let F : C → C and G : C → C be two endofunctors.
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A distributive law of the form

FG⇒ GF

corresponds to an Γ-algebra ΓG⇒ G where Γ : [C, C]→ [C, C] is defined as

ΓG = LanF (FG)

The proof of this fact is immediate by realising that FG⇒ GF is in one-to-one
correspondence with natural transformations LanFFG⇒ F using the fact that
LanF is left-adjoint to the functor AppFG = G ◦ F .

7 Monads from Kan Extensions
7.1 The Codensity Monad
The codensity monad is just the right Kan extension of J along J

Cod JX = RanJJX =

∫
Y :C

JY D(X,JY )

7.2 The Codensity Transformation
If L a R then both L ◦ − ` R ◦ − and − ◦R ` − ◦ L are adjunctions.

If L R
L

R

a then EL ER
−◦R

−◦L

a

Because of this fact there is a natural isomorphism

EL(F ◦R,G) ∼= ER(F,G ◦ L)

Now, since F ◦R is AppRF then EL(F ◦R,G) ∼= ER(F,RanRG). But then we
know also that

EL(F,G ◦ L) ∼= ER(F,RanRG)

Since the Yoneda embedding ER(−,−) : C → SetC
op

is fully faithful, by
Lemma 4.2 then G ◦ L ∼= RanRG. (But this is also the proof that adjoints
are unique up-to isomorphism). Now, if G = R then we get that the monad

R ◦ L ∼= RanRR (25)

8 On Free Monads
Given an endofunctor F : C → C the free monad M over F is the monad freely
generated by the constructors η : Id → M and op : FM → M . The fact that
is a monad implies it must have a join operation as well µ : MM → M . This
monad M is also indicated by F ∗.
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When it exists, the free monad is the least solution to the equation

F ∗A ∼= A+ FF ∗A

It can be shown that this is the free F -algebra in the sense that it is the monad
arising from a free-forgetful adjunction

F -Alg C
U

Freea

F∗

where F ∗ = UFree.
The ceiling and floor witness the natural isomorphism on both A and B

b·c : F -Alg(Free A,B) ∼= C(A,UB) : d·e

As usual, the unit of the monad is given by η = bidFreeAc and the multiplication
is derived by using the counit µ = UεFree. Now the map FF ∗A → F ∗A is
the F -algebra given by FreeA. To see this let F ∗A to be UFreeA (it’s just
a name). Say that Free takes an object A : C an sends it to an F -algebra,
FreeA = (X, alg : FX → X) for some X and some algebras alg. But that
means that UFreeA = X which implies X is F ∗A and that alg is the map
op : FF ∗A→ F ∗A we were looking for.

8.1 Free Monads and The Right Kan Extension
From the previous section we know that every monad arising from an adjunction
L a R (hence every monad!) is isomorphic to the right Kan extension of R along
R, denoted by RanRR and also known as the codensity monad.

Since the free monad is a monad, also the free monad can be transformed
using the codensity transformation. Since the algebraically free monad factors
as F ∗ = UFree then by (25)

F ∗ ∼= RanUU

By unfolding the definitions we get that

F ∗A ∼=
∫
Z:F -Alg

UZC(A,UZ) (26)

However, there is another way to transform the free monad. Assuming
F ∗A ∼= A+ FF ∗A we can compute as follows using the Yoneda lemma (5.1)

F ∗A ∼= A+ FF ∗A ∼= A+ (RanIdF )F
∗X ∼= A+

∫
X:C

FXC(F∗A,X) (27)

8.2 Free Monads and the Left Kan Extension
Assume a category C, an object A ∈ C and a functor F : C → C. Then the free
monad F ∗ : C → C can be transformed as follows using the CoYoneda Lemma
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(5.2)

F ∗A ∼= A+ FF ∗A ∼= A+ (LanIdF )F
∗A ∼= A+

∫ X:C
C(X,F ∗A) • FX (28)

In Set this isomorphism becomes,

F ∗A ∼= A+

∫ X:Set
FX × (X → F ∗A)

since in Set copowers are pairs and homsets are function spaces as in Section 2.2.1.
Remark. On Agda’s Free Monad’s Hack It is well-known that in Agda not all
endofunctors in Set have a fixed-point and more specifically not all functors
F yield a free monad F ∗. Hence the following code is rejected by Agda’s type
system:

data Free (f : Set → Set) (A : Set) : Set where
Var : A → Free f A
Com : f(Free f A) → Free f A

More intuitively, if Agda allowed this data type then it would allow fixed-points
for all endofunctors since F ∗0 is isomorphic to the least fixed-point of the functor
F , namely µF . I bet you could prove in fact that the following data type is
isomorphic to Free f ∅:

data Fix (f : Set → Set) : Set where
In : f (Fix f) → Fix f

This is obviously breaking Agda’s consistent type system.
To circumvent this problem Agda programmers take insipiration from Equa-

tion 28 and define the free monad using the following data type instead

data Free (f : Set0 → Set0) (A : Set0) : Set1 where
Var : A → Free f A
Call : Σ Set0 (λ X → f X × (X → Free f A)) → Free f A

However! this is not the equivalent of the free monad over the functor F ,
for all functors F . If it was then it would yield its fixed-point as well. The
trick employed here is much more subtle and uses the fact that the free monad
lives in higher universe. In particular, Free f A lives in Set1 while f is of type
Set0 → Set0. Hence the program f (Free f ∅) is not even well-typed which
means that Free f ∅ cannot be the fixed-point of f.

8.3 Algebras for the Left Kan extension
Every G-algebra is isomorphic to the algebras for the left Kan extension on G.
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D(LanIdGA,A) ∼= DD(LanIdG,RshAA) { by −A a RshId }
∼= DD(G,RshAA ◦ Id) { by LanId a AppId }
∼= DD(G,RshAA)
∼= D(GA,A) { by −A a RshId }

This proof is worth of reminding, but a simpler way to do it is to use CoYoneda
(5.2) directly

D(LanIdGA,A) ∼= D(GA,A)

8.4 The Freest Monad
Given a functor J : C → D and an endofunctor F : C → D the freest monad is
defined as follows

F st
J A
∼= JA+ LanJF (F

stA)

Note that F is not an endofunctor and so the freest monad is in fact a relative
monad [1]. The free monad over an endofunctor F : C → C is derivable by setting
J to the identity functor

F ∗A = F st
IdA
∼= IdA+ LanIdF (F

stA) ∼= A+ F (F stA)

The last step is of course the coYoneda lemma (5.2). The freest monad cannot
be derived from the free monad and I am not sure if it is the free monad in the
sense I mentioned above.

8.5 A Free Monad for Scoped Effects
Another monad arising from Kan extensions is the one by Ghani et al. [3] and
used to give semantics of scoped effect handlers [7].

The monad E is defined as follows

EA ∼= A+ΣEA+

∫ X∈C
C(X,EA) • ΓEX

where Σ is a signature functor and Γ is the signature functor for scoped effects.
The interested reader can refer to the cited papers for reference. Here we are
merely interested in showing that the coend computes the left Kan extension of
ΓE along the identity applied to the object EA thereby yielding the following
equivalent definition for E

EA ∼= A+ΣEA+ ΓEEA

In other words, this would show that a scoped effect needs two layers of syntax to
be represented correctly. This is equivalent to saying that if we have a morphism
X → EA and an object ΓEX we can compose via functoriality and obtain
ΓEEA.
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Here we want to make the calculations precise using the facts on Kan
extensions derived above. We compute as follows:

EA ∼= A+ΣEA+

∫ X∈C
C(X,EA) • ΓEX

∼= { By Definition 23 }
A+ΣEA+ LanId(ΓE)(EA)
∼= { By Equation 5.2 }
A+ΣEA+ ΓEEA

9 (Free) Applicative Functors
Definition 9.1 (Monoidal Category). A monoidal category is a category C
equipped with a functor

⊗ : C × C → C

called the tensor product and an object I ∈ C called the unit object or tensor
unit and such that the following arrows are natural isomorphisms in all variables:

• (A⊗B)⊗ C aA,B,C−−−−→ A⊗ (B ⊗ C)

• I ⊗A λA−−→ A

• A⊗ I ρA−−→ A

and such that the following diagrams commute for all objects involved:

(A⊗ I)⊗B A⊗ (I ⊗B)

A⊗B

aA,I,B

A⊗B A⊗λB

(A⊗B)⊗ (C ⊗D)

((A⊗B)⊗ C)⊗D A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C))⊗D)
αA,B⊗C,D

An applicative functor is a functor F : C → D with the following morphisms

pureA : A→ FA

~A,B : F (BA)→ FBFA

TODO (Laws).
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A lax monoidal is a functor F : C → D with the following morphisms:

η : ID → FIC

µA,B : FA⊗D FB → F (A⊗C B)

together with the unital and associativity laws, while strength is a family of
maps:

stA,B : A× FB → F (A×B)

An lax closed functor F : C → D is a functor along with the following morphisms:

η : ID → FIC

~A,B : F (BA)→ FBFA

along with suitable equations.

Lemma 9.1. Let (C,⊗C , IC) and (D,⊗D, ID)be two monoidal closed categories
and let F : C → D be a functor. The following statements about F are equivalent:

1. It is an applicative functor

2. It is a lax closed functor

3. It is a lax monoidal functor with strength

Proof. (1⇒ 2) The unit map of the lax closed functor can be constructed simply
by taking pureI while the µ is the same as the one for the applicative functor.
(2 ⇒ 3) The unit map is the same as the one from the lax closed structure. We
construct the µ of the lax monoidal functor from the lax closed structure as
follows:

µ : FA⊗D FB
Fη⊗DFB−−−−−−→ F (A⊗C B)B ⊗D FB → F (A⊗C B)

where the last step is the the uncurry of the lax closed structure and η : A→
(A⊗D B)B is the unit.

(3 ⇒ 1). We construct the pure map as follows:

pure : A ∼= A⊗C I
A⊗Cη−−−−→ A⊗C FI

stA,I−−−→ F (A⊗C I) ∼= FA

and the ~ as follows:

~ : FBA ⊗D FA→ F (BA ⊗C A)→ FB

The category of endofunctors [C, C] is a monoidal category w.r.t. functor
composition and the identity functor, this is denoted by ([C, C], ◦, Id). A monoid
in this category is, in particular, a monad.
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9.1 Functor Categories as Monoidal Categories
The category of functors on a monoidal category canonically inherits a monoidal
category structure via the Day convolution product.

Definition 9.2 (Day Convolution). Let (C,⊗, 1) be a small V -enriched monoidal
category. Then the Day convolution tensor product on VC

⊗Day : VC × VC → VC

is defined as follows:

(F ⊗Day G)A =

∫ XY :C×C
C(X ⊗C Y,A)⊗V FX ⊗V GY

For a monoidal a small V -enriched category (C,⊗C , IC) the Day convolution
product ⊗Day makes

([C,V],⊗Day,よ(IC))

a monoidal category with tensor unit よ(IC), the yoneda embedding applied to
the unit IC , C(I,−) : C → V.

Lemma 9.2. The following statements about F : C → D are equivalent:

• is lax closed with tensorial strength

• is a monoid in the monoidal category (DC ,⊗Day,よI)

Proof. (Sketch) An applicative functor F : C → C possesses the following arrows:

9.2 Day Convolution as a Left Kan Extension
Lemma 9.3 (Day Convolution as a Left Kan Extension). Let (C,⊗C , IC) be a
monoidal category and let F,G : C → V The Day convolution is isomorphic to
the left Kan extension of F⊗G along the functor ⊗C : C × C → C:

(F ⊗Day G) ∼= Lan⊗C (F⊗G)

where (F⊗G)(X,Y ) = FX ⊗V GY

Proof. By unfolding the definitions.

F ⊗Day G

= { By definition }∫ X,Y :C×C
C(X ⊗C Y,−)⊗V (FX ⊗V GY )

{ Using the definition of Lan with (F⊗G)X = FX ⊗V GX }
= Lan⊗C (F⊗G)
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Lemma 9.4 (Day Convolution as Products in SetCatop
).

Definition 9.3 (Applicative Functor). Let (C,⊗C , 1C) and (D,⊗D, 1D) be two
monoidal categories. An applicative functor F : C → D is lax monoidal functor
with tensorial strength.

9.3 Free Applicatives

10 On Traversals
In functional programming a traversal is, intuitively, a data type on which we
can visit the whole data by using recursion, like for example a list or a tree.
Take the following Haskell example for instance of a tree data structure: This
data structure is a traversable in that, in addition to be a Foldable, we can
take an effect F inside the list and fold the whole structure while running the
effects inside it producing an effect that produces a tree:

sequence :: Applicative f => [f a] -> f [a]
sequence [] = pure []
sequence (x:xs) = (:) <$> x <*> (sequence xs)

10.1 Traversals as distributive laws
A traversable can also be described in terms of a function of the following type:

traverseA,B : ∀F : Applicative. (A→ FB)× TA→ FTB

It can be easily proven using the theory presented here that traversals are in
one-to-one correspondence with distributive laws:

sequence : ∀F : Applicative. TF ⇒ FT

Let me make the definition of traversal more formal. We define the category of
applicative endofunctors F from Set to Set. A traversal is then an endofunctor
T : Set→ Set such that there exists a family of maps:

traverseA,B :

∫
F :F

Set(FBA × TA,FTB)

We want to show this map is equivalent to a distributive law

sequence :

∫
F :F

∫
X:Set

Set(TFX,FTX)
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We compute as follows:∫
AB:Set

∫
F :F

Set(FBA × TA,FTB)

∼= { Commuting variables }∫
F :F

∫
A,B:Set

Set(FBA × TA,FTB)

∼= { Switching over the ends (13) }∫
F :F

∫
B,A:Set

Set(FBA × TA,FTB)

∼= { Ends into CoEnds (15) }∫
F :F

∫
B:Set

Set(
∫ A

FBA × TA,FTB)

∼= { By definition of Left Kan Extension (24) in Set }∫
F :F

∫
B:Set

Set(LanId T FB,FTB)

∼= { by CoYoneda (5.2) }∫
F :F

∫
B:Set

Set(TFB,FTB)

10.2 Traversals are Coalgebras for Free Applicatives
Define RA,BX = A× (B → X). Then we show the following result:

A→ FB ∼= RA,B ⇒ F (29)
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The proof is using the Yoneda Lemma:

A→ FB
∼= { Applying Yoneda on FB }

A→
∫
X:D

Set(B,X)→ FX

∼= { By (14) }∫
X:D

A→ Set(B,X)→ FX

∼= { By (1) }∫
X:D

A× (Set(B,X)→ FX)

∼= { By Definition }∫
X:D

RA,BX → FX

∼= { by (16) }
RA,B ⇒ F

We now prove that∫
F :App

(A→ U(F )B)→ U(F )X ∼= UR∗
A,BX (30)

Here’s the proof using the higher-order Yoneda lemma and the fact that (−)∗ a
U : Endo(C) → App(C) between the endofunctor category Endo(C) into the
category App(C) of applicative functors:∫

F :App
(A→ U(F )B)→ U(F )X

∼= { By previous lemma (29) }

(

∫
F :App

(RA,B ⇒ U(F ))→ U(F )X

∼= { Using the adjunction (−)∗ a U }

(

∫
F :App

(R∗
A,B ⇒ F )→ U(F )X

∼= { By Definition of Nat. Transformations }

(

∫
F :App

SetC(R∗
A,B , F )→ U(F )X

∼= { By application of 4.4 with GH = U(H)X, H = R∗
A,B }

U(R∗
A,B)X
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We now prove that a traversable is a parametrised R∗-coalgebra on the carrier
TA. More precisely the statement reads:∫

F :App
(A→ U(F )B)→ TA→ U(F )TB ∼= TA→ U(R∗

A,B)TB (31)

The proof is simple:∫
F :App

(A→ U(F )B)→ TA→ U(F )TB

∼= { Swapping the arguments for the function space }

TA→
∫
F :App

(A→ U(F )B)→ U(F )TB

∼= { By previous lemma (30) }
TA→ U(R∗

A,B)TB

10.3 Containers
Consider an endofunctor F : Set→ Set. The initial F -algebra (when it exists) is
denoted by (µF, In) and it is the least fixed-point of F with Inop : FµF → µF
witnessing the isomorphism µF ∼= FµF .

The problem is that not every functor has a fixed-point. For this reason, when
doing programming languages theory, we often restrict ourselves to polynomial
functors. For families of objects {Ai}i∈n and {Xi}i∈n, these are functors of the
following form:

FX = A1 +A2 ×X +A3 ×X2 +A4 ×X3 + · · ·+An+1 ×Xn

A way of representing a polynomial functor is by means of a container. A
container is a pair (S, ar) where S is a object representing shapes and ar : S → N
is the arity of the shape.

The container extension represents the actual functor and is defined as
follows:

[[S, ar]]X = Σs : S.Xar(s)

An example is the functor FX = 1 +A×X whose least fixed-point is the type
of lists over an object A. A container for this functor is formed by the shape
1 + A and the arity for each position in the shape ar : 1 + A → N given by
ar(inl(∗)) = 0 and ar(inr(a)) = 1. The container extension is therefore the type
Σs : 1 + A.Xar(s). There are two possible pairs for this type. The first one is
where the first component is inl(∗) which and the second is a map f : 0 → X
whose cardinality is in fact 1 corresponding to the first component of the functor.
The second one is where the first component is inr(a) and the second component
is a map f : 1→ X whose cardinality is actually the cardinality of X. Hence the
elements of the extension of this container are the same elements of the functor
1 +A×X.
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