
A Memorandum on Kan Extensions and Monads

Marco Paviotti

Abstract

These notes are meant to remind myself of some facts about Kan
extension and monads. The first part is devoted to basic definitions about
adjunctions, ends and coends, which are needed to explain the proofs later
on. The second part is on monads and Kan extensions.

Contents

1 Adjunctions and Monads 2

2 Limits and Colimits 3
2.1 Preservation and Creation of (Co)Limits 3
2.2 Dependent product and sum . 4

2.2.1 Powers and CoPowers . 4

3 Ends and Coends 5
3.1 Preservation of Ends . 6
3.2 Natural transformations and Ends 6

4 The Yoneda Lemma 6
4.1 The mini Yoneda Lemma for Type Theorists 7
4.2 Exponentials in Presheaf Categories 7

5 Kan Extensions 8
5.1 Kan Extensions . 9
5.2 Yoneda revisited . 12

5.2.1 Yoneda . 12
5.2.2 CoYoneda . 12

5.3 Left and Right Shifts . 12

6 Monads from Kan Extensions 13
6.1 The Codensity Monad . 13
6.2 The Codensity Transformation 13

1

7 On Free Monads 14
7.1 Free Monads and The Right Kan Extension 14
7.2 Free Monads and the Left Kan Extension 15
7.3 Algebras for the Left Kan extension 15
7.4 The Freest Monad . 15

1 Adjunctions and Monads

Given two functors L : D → C and R : C → D and adjunction is an isomorphism
of homsets

⌊·⌋ : C(LA,B) ∼= D(A,RB) : ⌈·⌉

which is furthermore natural in A and B. Here ⌊⌋̇ and ⌈⌉̇ are the functions
witnessing the isomorphism. The adjunction is usually depicted as follows

C D
L

R

⊣

We say that that L is left adjoint and R is right adjoint and it is indicated by
L ⊢ R. As a consequence of the isomorphism, for f : LA→ B and g : A→ RB
we have that

⌊f⌋ = g ⇐⇒ f = ⌈g⌉
and because the isomorphism is natural we can derive the fusion laws. For
a : A′ → A, b : B → B′, f : LA→ B and g : A→ RB

R(b) · ⌊f⌋ = ⌊b · f⌋
⌊f⌋ · a = ⌊f · L(a)⌋
b · ⌈g⌉ = ⌈R(b) · g⌉
⌈g⌉ · L(a) = ⌈g · a⌉

We can also compute the fusion laws this way.

R(b) · ⌊f⌋ · a = ⌊b · f · L(a)⌋
b · ⌈g⌉ · L(a) = ⌈R(b) · g · a⌉

This is really all about adjunctions. All the other definitions and construc-
tions are equivalent to this one. Furthermore, this material is very well covered
elsewhere [2, 5, 3] so I will not be covering it further.

What is important for the sake of this notes is that an adjunction gives rise
to a monad and a comonad where RL is the monad and LR is the comonad.
The unit and counit of the adjunction are defined as follows

ηA = ⌊idLA⌋
ϵB = ⌈idRB⌉

and are respectively the unit of the monad and the counit of the comonad
generated by the adjunction. The join of the monad µ : RLRL→ RL is defined
as µ = RϵL and the cojoin δ : LR→ LRLR is defined as δ = LηR.

2

2 Limits and Colimits

Given two objects X and Y in a category, X × Y forms the product of X and
Y . We can generalise this further. Given a functor D : I → C the limit lim←−D
is an universal object such that for every I ∈ I, there exists a projection map

lim←−DI
πI−→ DI such that for every morphism DI1

f−→ DI2 we have

πI2 = f · πI1

and furthermore any other object such as this has a unique morphism into the
limit commuting with the projections [2, 5].

The limit is right adjoint to the diagonal functor mapping every object to
the constant functor and the colimit is the left adjoint to the diagonal functor.

C CI C
lim−→ ∆

∆ lim←−
⊣ ⊣

We right down the isomorphisms

C(lim−→
I∈I

A(I), B) ∼= CI(A,∆B)

CI(∆A,B) ∼= C(A, lim←−
I∈I

B)

2.1 Preservation and Creation of (Co)Limits

A functor H : C → D is said to preserve limits if, given a diagram F : I → C

H lim←−
I∈I

FI ∼= lim←−
I∈I

HFI

In other words, H preserves limits if the limit of the diagram obtained by com-
position with H, namely HF , corresponds with the limit of F applied to H. In
particular, such a functor preserves small limits as well. A functor that preserves
small (co)limits is called (co)continuous.

As a prominent example, the covariant homset functor C(C,−) : C → Set
preserve limits

C(C, lim←−
I∈I

FI) ∼= lim←−
I∈I
C(C,FI) (1)

On the other hand, the contravariant homset functor, which may be written
as C(−, C) = Cop(C,−) : Cop → Set carries colimits over to limits in the
following sense

C(lim−→
I∈I

FI,C) ∼= lim←−
I∈I
C(FI,C) (2)

3

2.2 Dependent product and sum

Let us consider the set I (or the discrete category I with only identities).
Then the right adjoint to the diagonal functor is called the dependent prod-
uct ΠI∈IB(I) for some functor B : I → C and the left adjoint is called the
dependent sum ΣI∈IA(I) for some functor A : I → C.

C CI C
ΣI∈I .(−)I ∆

∆ ΠI∈I .(−)I

⊣ ⊣

The limit preservation (1) and colimit reverse (2) continues to hold for de-
pendent products and sums.

ΠI∈IC(X,A(I)) ∼= C(X,ΠI∈IA(I) (3)

C(ΣI∈IA(I), X) ∼= ΠI∈IC(A(I), X) (4)

2.2.1 Powers and CoPowers

Now we consider categories of constant functors CI and keep I as the discrete
category. The limits and colimits of these functors are called powers and copow-
ers which can be indicated by ΣI.A = I •A and ΠI.B = BI

C CI C
ΣI.(−) ∆

∆ ΠI.(−)

⊣ ⊣

Now equations (3) and (4) in turn specialise to powers and copowers

C(X,A)I ∼= C(X,AI) (5)

C(I •A,X) ∼= C(A,X)I (6)

As a consequence of (5) and (6) we get that

C(I •A,B) ∼= C(A,B)I ∼= C(A,BI)

Now since I is the discrete category (it has no arrows) it can be regarded as a
set! Hence, the set of natural transformation betweeen to constant functors is
just the set of functions between the images of these indexed by I

CI(∆X,∆Y) ∼= C(X,Y)I ∼= I → C(X,Y) (7)

Note that, since I and C(X,Y) are sets, then C(X,Y)I is the exponential object
in Set and hence it is isomorphic to I → C(X,Y) which is the set of functions.

In Set, I •A = A× I and BI is the function space I → B.

4

3 Ends and Coends

Sometimes it useful to talk about limits and colimits of diagrams that have a
contravariant component. These are called ends and coends. Consider a functor
S : Cop × C → D, the end of S is the limit of S when S is seeing as a diagram

S(C,C)
S(f,C)−−−−→ S(B,C)

S(B,f)←−−−− S(B,B)∫
X
S(X,X)

S(C,C) S(B,B)

S(B,C)

S(f,C) S(B,f)

This is though not a very precise definition since the limit needs to be defined
on a covariant functor. However, it can be shown [5, Chapter IX, Proposition
1], that for every category C and functor S : Cop×C → D there exists a category
C§ and functor S§ : C§ → D such that∫

C

S(C,C) ∼= lim←−
C

S§C (8)

We refer the reader to the more in-depth presentations of this fact [5, 4].
Moreover, whenever S is “dummy” in the first variable, i.e. S factors through

the second projection as in

Cop × C C

D

π2

T
S

then the end coincides with the limit of T∫
C:C

S(C,C) = lim←−
C:C

TC (9)

Ends behave similarly to universal quantification. For a functor S : Cop ×
C ×Dop ×D → E∫

C:C

∫
D:D

S(C,C,D,D) ∼=
∫
D:C

∫
C:D

S(C,C,D,D) (10)

This property is known as the exchange rule which for integrals it corresponds
to the Fubini rule [4].

5

3.1 Preservation of Ends

A functor H : C → D is said to preserve the end of a functor S : Cop × C → D

H

∫
C∈C

S(C,C) =

∫
C∈C

HS(C,C)

In other words, when w : e→̈S is an end of S and Hw : He→̈HS is an end for
HS.

For example, as it was the case for the limits and colimits, the homset functor
preserves ends in the following way

C(X,
∫
C:C

S(C,C)) =

∫
C:C

(C(X,S(C,C))) (11)

and reserves ends into coends

C(
∫ C:C

S(C,C), X) =

∫
C:C

(C(S(C,C)), X) (12)

3.2 Natural transformations and Ends

Natural transformations are examples of ends. Given two functors F,G : C → D,
the end of the homset functor DC(F−, G−) is the set of natural transformations
from F to G

Nat(F,G) =

∫
C:C
D(FC,GC) (13)

4 The Yoneda Lemma

Assume a locally small category C, then for all covariant functors F : C → Set,

FC ∼= C(C,−) ·−→ F (14)

The functions witnessing the isomorphism are given by ϕ(x, g) = F (g)(x) and
its inverse ψ(i) = iC(idC). This lemma is sometimes stated for contravariant
functors F : Cop → Set as follows

FC ∼= C(−, C) ·−→ F (15)

But notice since C(−, C) is equal to Cop(C,−), by definition of opposite category,
this is just a special case of (14).

The homset functor C(−,−) : C → SetC
op

is also called the Yoneda embed-
ding, y. The fact that y is an embedding means that the y is a fully faithful
functor, i.e. it is bijection on morphisms, and therefore it preserves (because it
is a functor) and reflects (because it is fully faithful) isomorphisms

yC ∼= yD ⇐⇒ C ∼= D (16)

Moreover,
yC(f) = yD(g) ⇐⇒ f = g (17)

yC(f) = yD(g) ⇐⇒ f = g (18)

6

4.1 The mini Yoneda Lemma for Type Theorists

Disclaimer: This section is taken from a lecture by Roy Crole at the Midlands
Summer School 2018.

Say that you have a typed language with a unary constructor R which has
the following typing rule

Γ ⊢ t : A
Γ ⊢ R(t) : B

(19)

The task is to give a semantic interpretation [[·]] for the language by induction
on the typing judgment Γ ⊢ t : A such that terms are interpreted as morphisms

[[Γ]]
[[t]]−−→ [[A]], assuming for course [[·]] is also defined separately for contexts and

types.
In order to interpret (19), as mentioned above, we do induction on the typing

judgment so that, by induction, we know there exists a morphism [[Γ]]
[[t]]−−→ [[A]]

and we have to construct a morphism [[Γ]]
[[R(t)]]−−−→ [[B]].

In the remainder of this section we remove the semantics brackets for sim-
plicity, for example, assuming A be interpretation of [[A]], t : Γ → A the inter-
pretation of t an so on.

In this situation it can be quite tricky sometimes to figure out what this
moprhism should be since there is some plumming needed to pass around the
context. A particular instantiation of the Yoneda lemma states that given a

morphism t : Γ
t−→ A and a morphism R : A → B there is a canonical way to

construct a morphism Γ
R(t)−−−→ B.

To show this we instantiate the contravariant Yoneda lemma 15 by setting
F = C(−, B). Then for all objects A : Cop we have

C(A,B) ∼= C(−, A) ·−→ C(−, B)

Let R : A → B be the interpretation of R then, one side of the isomorphism is
ϕ(R, t) = F (t)(R) = C([[t]], B)(R). In other words, the interpretation of R(t) is
simply R ◦ t.

4.2 Exponentials in Presheaf Categories

Say we are working in the presheaf category over C, namely SetC
op

.
We want to find out what the exponential in this category is. It may be

tempting to define the exponential as the natural transformations, but this is
not what is happening. If the exponential existed then it would be an object in
SetC

op

and at this point we would be able to apply the Yoneda lemma instanti-
ating F with AB in (14). We then calculate as follows using properties of ends
and exponentials:

7

BA(X) ∼= { Yoneda Lemma (14) }

C(−, X)
·−→ BA

∼= { Exponentials in functor categories }

C(−, X)×A ·−→ B
∼= { Ends as natural transformations (13) }∫ C:C

Set(C(C,X)×A(C), B(C))

Thus the exponential at stage X is the set natural transformations from the
functor A to the functor B, but restricted to the components C such that there
exists at least one arrow C → X.

5 Kan Extensions

Consider the category C formed by these objects and arrows

A→ C ← B

and the category D formed by the following objects and arrows

D A

B C

Clearly, C is a full subcategory of D, indicated by the presence of the inclusion
functor i : C ↪→ D since A,B and C contained in D along with their associated
arrows. Now given a functor F : C → E how can we extend the functor to
the category D such that this functor agrees with F on the objects and arrows
that already belong to C? Well notice that this functor needs to send D to
an object GD which has arrows GD → FX = GX for each X ∈ C for which
there is an arrow D → X. A cone for the following diagram will do since D
has an arrow into every object of C, but since we will need to prove this object
is the “maximal” one we choose the limiting cone of this diagram which is the
pullback P

P FA

FB FC

⌟

Now we need to ensure that this assignment is the “largest” one we could have
picked. To do this we pick a generalised element of F , namely, for a functor
H : D → E and for a generalised element f : H ◦ i ·−→ F we need to show there

8

exists a unique map H
·−→ G such that on objects in C this map agrees with f1.

Now, for X ∈ C, this is just f since GX = FX. We are left to show that there
exists a map HD → GD = P , but this is easy to see since HD is a cone for the
functor F

HD HA P FA

HB HC FB FC

⌟

fA

fB fC

Let us generalise this a bit further. Let C ↪→ D be a full subcategory of D.
Let i : C → D be the inclusion functor and let a functor F : C → E . We want to
extend this functor to a functor G : D → E such that for every object X ∈ C, G
sends X to FX.

Since G has to be a functor we need for every morphism Y → Y ′ in D to
define what the functorial action of G is. Now let us restrict to the case when
Y ′ is an X ∈ C. When Y ∈ D, but Y ̸∈ C, for every morphism Y → X in D,
the functorial action of G has to be of type GY → FX, hence we define GY has
the object that has morphisms into every object FX that has a map Y → X.
In particular, we want to take the universal such cone which is the limit of a
functor F ◦ π1 : Y/i → EC where Y/i is the comma category formed of triples
(Y ∈ D, X ∈ C, f : Y → iX) and π is the projection functor π : Y/i→ C

GY = lim←−
(Y,X,f :Y→iX)

(F ◦ π)(Y,X, f : Y → iX) = lim←−
(Y,X,f :Y→X)

FX

By (9) and since this functor is covariant this limit is isomorphic to the following
end formula

GY ∼=
∫
(Y,X,f :Y→X)

FX

which is the end of the functor F ◦ π ◦ π2.

5.1 Kan Extensions

Consider a reindexing functor J : C → D and define the functor −◦J : ED → EC
also named AppJ .

We want to find out whether AppJ has a left and right adjoint. We call its
left and right adjoint LanJ and RanJ respectively.

EC ED EC
AppJ LanJ

RanJ AppJ

⊣ ⊣

1For the attentive reader, this conditions is the universal property of the counit required
for G to be the right adjoint to the functor − ◦ i

9

Now because LanJ is the left adjoint and RanJ to be the right one we would
expect the following to be a natural isomorphisms

ED(LanJH,G) ∼= EC(H,AppJG) EC(AppJH,G)
∼= ED(H,RanJG)

In the MacLane [5] he is defining the right Kan extension and the proving
it is the right adjoint. Here we take a different approach. By using the Yoneda
lemma we derive the right adjoint which is unique up to isomorphism so it must
be the right Kan extension. This proof is taken form Hinze’s work on generic
programming [3]. Here I have made it a bit more precise.

EC(AppJA,B) = { Homsets in the exponential category are natural transformations }
Nat(AppJA,B)
∼= { Natural transformations are ends (13) }∫
X:C
C(AJX,BX)

∼= { Yoneda with C(A−, BX) }∫
X:C

Nat(D(−, JX), C(A−, BX))

∼= { by (13) }∫
X:C

∫
Y :D
D(Y, JX)→ C(AY,BX)

∼= { by (7) }∫
X:C

∫
Y :D
C(AY,BX)D(Y,JX)

∼= { by (5) }∫
X:C

∫
Y :D
C(AY,BXD(Y,JX))

∼= { by (10) }∫
Y :D

∫
X:C
C(AY,BXD(Y,JX))

∼= { Homsets preserve ends (11) }∫
Y :D
C(AY,

∫
X:C

BXD(Y,JX))

∼= { Natural transformation are ends (13) }

Nat(A−,
∫
X:C

BXD(−,JX))

∼= { Homsets in the exponential category are natural transformations }

ED(A−,
∫
X:C

BXD(−,JX))

10

For all functors J : C → D, A : C → E and B : D → E

RanJAY =

∫
X∈C

ΠD(Y,JX)AX

We now compute the left Kan extension. I could not find this proof is not
in [3, 5].

EC(A,AppJB) = A
·−→ AppJB

∼= { Natural transformations are ends (13) }∫
X:C
C(AX,BJX)

∼= { by Yoneda with C(AX,B−) }∫
X:C
D(JX,−) ·−→ C(AX,B−)

∼= { Natural transformations are ends(13) }∫
X:C

∫
Y :D
D(JX, Y)→ C(AX,BY)

∼= { The set functions space is a power (7) }∫
X:C

∫
Y :D
C(AX,BY)D(JX,Y)

∼= { Homsets revert powers into copowers (6) }∫
X:C

∫
Y :D
C(D(JX, Y) •AX,BY)

∼= { Switching over ends (10) }∫
Y :D

∫
X:C
C(D(JX, Y) •AX,BY)

∼= { Homsets reverse ends into coends (12) }∫
Y :D
C(
∫ X:C

D(JX, Y) •AX,BY)

∼= { Natural transformations are ends (13) }

Nat(

∫ X:C
D(JX,−) •AX,B)

= ED(
∫ X:C

D(JX,−) •AX,B)

Now by looking at what we have got we define the left Kan extension as a
functor parametrised by A

LanJAY =

∫ X∈C
D(JX, Y) •AX

11

5.2 Yoneda revisited

5.2.1 Yoneda

Given a functor F : C → Set, the Yoneda lemma says that F is isomorphic to
the right Kan extension over the identity functor of F

F ∼= RanIdF (20)

We compute as follows

FC ∼= Nat(C(C,−), F)

∼=
∫
X:C

Set(C(C,X), FX)

∼=
∫
X:C
C(C,X)→ FX

∼=
∫
X:C

FXC(C,X)

∼= RanIdFC

Another way of proving this is by using the fact that AppId is left adjoint to
RanId.

EC(AppIdG,F) = EC(G,F) ∼= EC(G,RanIdF)

Thus, since EC(−, F) ∼= EC(−,RanIdF) by Yoneda (16) we have F ∼= RanIdF .

5.2.2 CoYoneda

The coYoneda lemma states that

F ∼= LanIdF (21)

This can be proven by instantiating the left Kan extension with the identity
functor obtaining the adjunction LanId ⊣ AppId. From the adjunction we know
that

EC(LanIdF,G) ∼= EC(F,AppIdG) = EC(F,G ◦ Id) = EC(F,G)

is a natural in F and G. Because this isomorphism is natural we know that
EC(LanIdF,−) ∼= EC(F,−) which by (16) implies LanIdF ∼= F since EC(−,−) is
the Yoneda embedding.

5.3 Left and Right Shifts

Left and right shifts are just particular cases of Kan extensions where C is 1. So
now the reindexing functor is just an object D : 1→ D. If we now start abusing

12

some notation setting D to mean D(∗) we have AppDH = H ◦D = HD(∗) =
HD

E ED E
−D LshD

RshD −D

⊣ ⊣

At this point the natural isomoprhisms induces by the adjunctions are as follows

ED(LshDF,G) ∼= E(F,GD) E(FD,G) ∼= ED(F,RshJG)

What is interesting to note is that left and right Kan extensions simplify into
left and right shifts

LshDFY = D(D,Y) • F RshDGY = GD(Y,D)

6 Monads from Kan Extensions

6.1 The Codensity Monad

The codensity monad is just the right Kan extension of J along J

Cod JX = RanJJX =

∫
Y :C

JY D(X,JY)

6.2 The Codensity Transformation

If L ⊣ R then both L ◦ − ⊢ R ◦ − and − ◦R ⊢ − ◦ L are adjunctions.

If L R
L

R

⊣ then EL ER
−◦R

−◦L

⊣

Because of this fact there is a natural isomorphism

EL(F ◦R,G) ∼= ER(F,G ◦ L)

Now, since F ◦R is AppRF then EL(F ◦R,G) ∼= ER(F,RanRG). But then we
know also that

EL(F,G ◦ L) ∼= ER(F,RanRG)

Since the Yoneda embedding ER(−,−) : C → SetC
op

is fully faithful, by (16)
then G ◦L ∼= RanRG. (But this is also the proof that adjoints are unique up-to
isomorphism). Now, if G = R then we get that the monad

R ◦ L ∼= RanRR (22)

13

7 On Free Monads

Given an endofunctor F : C → C the free monad M over F is the monad freely
generated by the constructors η : Id → M and op : FM → M . The fact that
is a monad implies it must have a join operation as well µ : MM → M . This
monad M is also indicated by F ∗.

When it exists, the free monad is the least solution to the equation

F ∗A ∼= A+ FF ∗A

It can be shown that this is the free F -algebra in the sense that it is the monad
arising from a free-forgetful adjunction

F -Alg C
U

Free⊣

F∗

where F ∗ = UFree.
The ceiling and floor witness the natural isomorphism on both A and B

⌊·⌋ : F -Alg(Free A,B) ∼= C(A,UB) : ⌈·⌉

As usual, the unit of the monad is given by η = ⌊idFreeA⌋ and the multiplication
is derived by using the counit µ = UϵFree. Now the map FF ∗A → F ∗A is
the F -algebra given by FreeA. To see this let F ∗A to be UFreeA (it’s just
a name). Say that Free takes an object A : C an sends it to an F -algebra,
FreeA = (X, alg : FX → X) for some X and some algebras alg. But that
means that UFreeA = X which implies X is F ∗A and that alg is the map
op : FF ∗A→ F ∗A we were looking for.

7.1 Free Monads and The Right Kan Extension

From the previous section we know that every monad arising from an adjunction
L ⊣ R (hence every monad!) is isomorphic to the right Kan extension of R along
R, denoted by RanRR and also known as the codensity monad.

Since the free monad is a monad, also the free monad can be transformed
using the codensity transformation. Since the algebraically free monad factors
as F ∗ = UFree then by (22)

F ∗ ∼= RanUU

By unfolding the definitions we get that

F ∗A ∼=
∫
Z:F -Alg

UZC(A,UZ) (23)

However, there is another way to transform the free monad. Using Yoneda
(20)

F ∗A ∼= A+ FF ∗A ∼= A+ (RanIdF)F
∗X ∼= A+

∫
X:C

FXC(F∗A,X) (24)

14

7.2 Free Monads and the Left Kan Extension

Using CoYoneda (21)

F ∗A ∼= A+ F ◦ F ∗ ∼= A+ (LanIdF)F
∗A ∼= A+

∫ X:Set

C(X,F ∗A) • FX (25)

In Set,

F ∗A ∼= A+

∫
X:C

FX × (X → F ∗A)

7.3 Algebras for the Left Kan extension

Every G-algebra is isomorphic to the algebras for the left Kan extension on G.

D(LanIdGA,A) ∼= DD(LanIdG,RshAA) { by −A ⊣ RshId }
∼= DD(G,RshAA ◦ Id) { by LanId ⊣ AppId }
∼= DD(G,RshAA)
∼= D(GA,A) { by −A ⊣ RshId }

This proof is worth of reminding, but a simpler way to do it is to use CoYoneda
(21) directly

D(LanIdGA,A) ∼= D(GA,A)

7.4 The Freest Monad

Given a functor J : C → D and an endofunctor F : C → D the freest monad is
defined as follows

F st
J A
∼= JA+ LanJF (F

stA)

Note that F is not an endofunctor and so the freest monad is in fact a relative
monad [1]. The free monad over an endofunctor F : C → C is derivable by
setting J to the identity functor

F ∗A = F st
IdA
∼= IdA+ LanIdF (F

stA) ∼= A+ F (F stA)

The last step is of course the coYoneda lemma (21). I am not sure yet if the
freeest monad is derivable from the free monad.

References

[1] Thorsten Altenkirch, James Chapman, and Tarmo Uustalu. Monads need
not be endofunctors. Log. Methods Comput. Sci., 11(1), 2015.

[2] Steve Awodey. Category Theory. Oxford University Press, Inc., USA, 2nd
edition, 2010.

15

[3] Ralf Hinze. Generic programming with adjunctions. In Jeremy Gibbons,
editor, Generic and Indexed Programming - International Spring School,
SSGIP 2010, Oxford, UK, March 22-26, 2010, Revised Lectures, volume
7470 of Lecture Notes in Computer Science, pages 47–129. Springer, 2010.

[4] Fosco Loregian. (Co)end Calculus. Cambridge University Press, jun 2021.

[5] Saunders MacLane. Categories for the Working Mathematician. Springer-
Verlag, New York, 1971. Graduate Texts in Mathematics, Vol. 5.

16

	Adjunctions and Monads
	Limits and Colimits
	Preservation and Creation of (Co)Limits
	Dependent product and sum
	Powers and CoPowers

	Ends and Coends
	Preservation of Ends
	Natural transformations and Ends

	The Yoneda Lemma
	The mini Yoneda Lemma for Type Theorists
	Exponentials in Presheaf Categories

	Kan Extensions
	Kan Extensions
	Yoneda revisited
	Yoneda
	CoYoneda

	Left and Right Shifts

	Monads from Kan Extensions
	The Codensity Monad
	The Codensity Transformation

	On Free Monads
	Free Monads and The Right Kan Extension
	Free Monads and the Left Kan Extension
	Algebras for the Left Kan extension
	The Freest Monad

