Synthesis of distributed mobile programs using monadic types in Coq

Marino Miculan Marco Paviotti

Dept. of Mathematics and Computer Science University of Udine

ITP 2012

August 13th, 2012

The problem

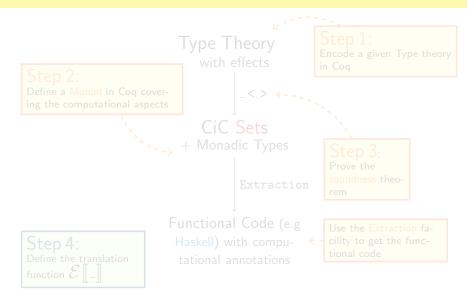
The extraction of certified *functional* and effect-free programs is a well-know practice in the field of Type Theory, however:

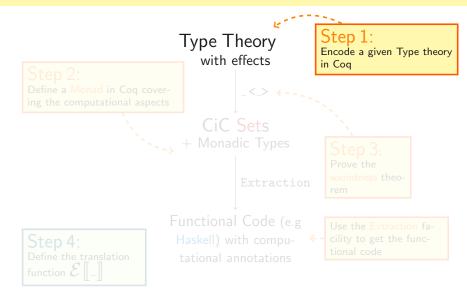
- ✓ There are many other computational effects (and corresponding Type Theories, possibly)
- ✓ These scenarios would greatly benefit from a mechanisms for extraction
- ★ Languages implementing these aspects usually do not support the Curry-Howard isomorphism
- Implementing a specific proof-assistant would be a daunting task anyway.

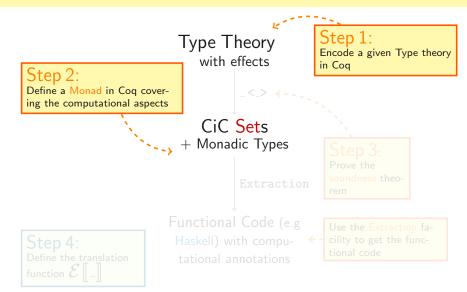
Our contribution

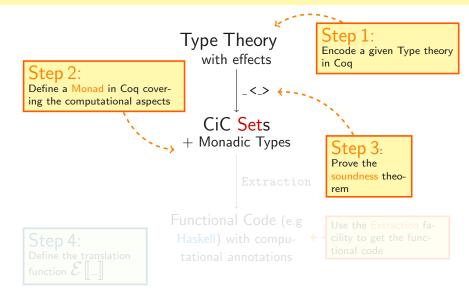
We propose:

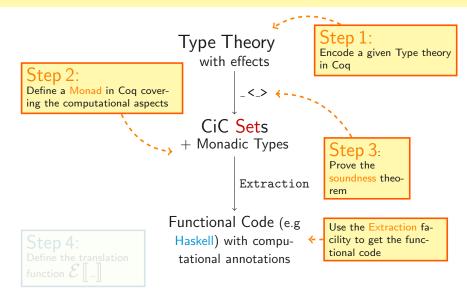
- a general methodology for circumventing this problem using the existing technology (Coq)
 - + encapsulate non-functional aspects in monadic types
 - + implement a post-extraction compiler for realizing monadic constructors in the target language
- example: distributed programs with effects in Erlang.

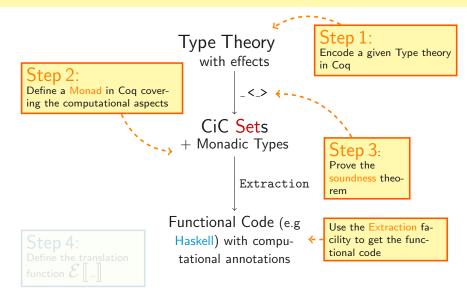


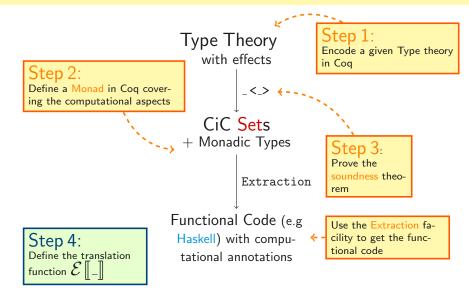


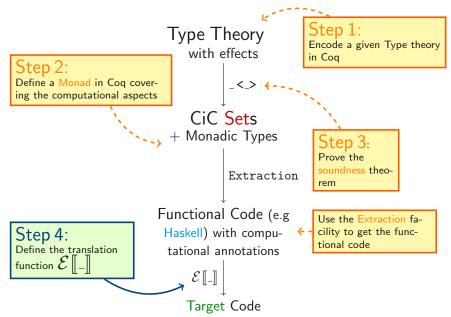


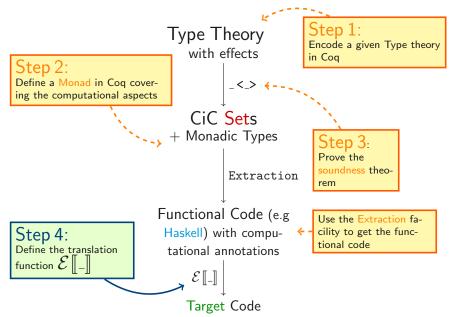


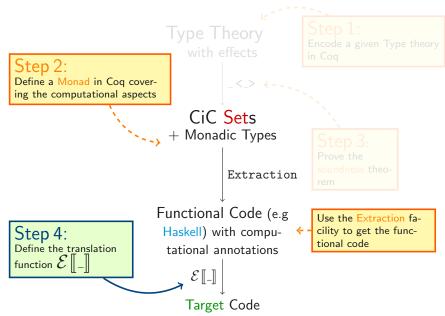












We define the distributed monad in the Calculus of Inductive Constructions

forall w: World and A: Set IO w A:Set

We define the distributed monad in the Calculus of Inductive Constructions

We define the distributed monad in the Calculus of Inductive Constructions

By Curry-Howard Isomorphism, the (constructive) proofs of these specifications are turned into **decorated Haskell** code

IO w A
$$\overset{Extraction}{\Rightarrow} \mathbb{H}$$

We define the distributed monad in the Calculus of Inductive Constructions

By Curry-Howard Isomorphism, the (constructive) proofs of these specifications are turned into **decorated Haskell** code

IO w A
$$\stackrel{Extraction}{\Rightarrow} \mathbb{H}$$

These decorations are exploited by the Haskell-Erlang Compiler

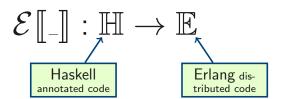
$$\mathcal{E} \llbracket \underline{\ } \rrbracket : \mathbb{H} \to \mathbb{E}$$

We define the distributed monad in the Calculus of Inductive Constructions

By Curry-Howard Isomorphism, the (constructive) proofs of these specifications are turned into **decorated Haskell** code

IO w A
$$\stackrel{Extraction}{\Rightarrow} \mathbb{H}$$

These decorations are exploited by the Haskell-Erlang Compiler



We define a family of monads indexed by worlds from Set to Set. Given a world w a monad is a functor defined as

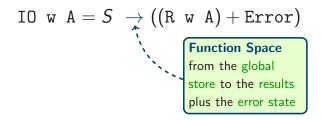
IO w
$$A = S \rightarrow ((R \text{ w } A) + Error)$$

We define a *family* of monads indexed by worlds from Set to Set. Given a world w a monad is a functor defined as

IO
$$w A = S \rightarrow ((R w A) + Error)$$

A Localized computation

We define a *family* of monads indexed by worlds from Set to Set. Given a world w a monad is a functor defined as



We define a *family* of monads indexed by worlds from Set to Set. Given a world w a monad is a functor defined as

IO w
$$A = S \rightarrow ((R \text{ w } A) + Error)$$

Monadic Operators

$$\begin{array}{c} {\rm IOget_w~A:IO~remote~A} \to {\rm IO~w~A} \\ & \lambda~\kappa~\sigma.~\kappa(\sigma) & ({\rm Operator's~implementation}) \end{array}$$

We define a family of monads indexed by worlds from Set to Set. Given a world \mbox{w} a monad is a functor defined as

IO w
$$A = S \rightarrow ((R \text{ w } A) + Error)$$

Monadic Operators

$$\begin{array}{c} {\rm IOget_w~A:IO~remote~A} \to {\rm IO~w~A} \\ & \lambda~\kappa~\sigma.~\kappa(\sigma) & ({\rm Operator's~implementation}) \end{array}$$

Other monadic operators

$$\begin{split} & \texttt{IOreturn}_{\texttt{w}} \ \texttt{A} : A \to \texttt{IO} \ \texttt{w} \ \texttt{A} \\ & \texttt{IObind}_{\texttt{w}} \ \texttt{A} \ \texttt{B} : \texttt{IO} \ \texttt{w} \ \texttt{A} \to (A \to \texttt{IO} \ \texttt{w} \ \texttt{B}) \to \texttt{IO} \ \texttt{w} \ \texttt{B} \\ & \texttt{IOlookup}_{\texttt{w}} \ \texttt{A} : \ \texttt{Ref}_{\texttt{w}} \to (\mathbb{N} \to \texttt{IO} \ \texttt{w} \ \texttt{A}) \to \texttt{IO} \ \texttt{w} \ \texttt{A} \\ & \texttt{IOupdate}_{\texttt{w}} \ \texttt{A} : \ \texttt{Ref}_{\texttt{w}} \to \mathbb{N} \to \texttt{IO} \ \texttt{w} \ \texttt{A} \to \texttt{IO} \ \texttt{w} \ \texttt{A} \\ & \texttt{IOnew}_{\texttt{w}} \ \texttt{A} : \mathbb{N} \to (\texttt{Ref}_{\texttt{w}} \to \texttt{IO} \ \texttt{w} \ \texttt{A}) \to \texttt{IO} \ \texttt{w} \ \texttt{A} \end{split}$$

Lemma (Remote Procedure Call)

$$orall w$$
 w', ($\mathbb{N} o IO$ w' bool) o ($\mathbb{N} o IO$ w bool)

Proof. simpl; introv f. intro n. apply* IOget. **Qed**.

Haskell

```
rpc w w' f n = iOget w w' (f n)
```

Lemma (Remote Procedure Call) $\forall w \ w^{j}, (\mathbb{N} \to I0 \ w' \ bool) \to (\mathbb{N} \to I0 \ w \ bool)$ Proof. simpl; introv f. intro n. appl Given two worlds w w' Qed. Haskell $\operatorname{rpc} \ w \ w' \ f \ n = i\operatorname{Oget} \ w \ w' \ (f \ n)$

Lemma (Remote Procedure Call) $\forall w \ w', (\mathbb{N} \to IO \ w' \ bool) \to (\mathbb{N} \to IO \ w \ bool)$ Proof. simpl; introv f. intro n. apply* lOget. Qed. Given a function f

Haskell

Lemma (Remote Procedure Call) $\forall w \ w', (\mathbb{N} \to IO \ w' \ bool) \to (\mathbb{N} \to IO \ w \ bool)$ Proof. simpl; introv f. intro n. apply* lOget. Given a value, say n Qed. Haskell \mathbb{N} rpc \mathbb{N} \mathbb{N} \mathbb{N} i \mathbb{N} i

Lemma (Remote Procedure Call)

$$orall w$$
 w', $(\mathbb{N} o IO$ w' bool) $o (\mathbb{N} o IO$ w bool)-

Proof. simpl; introv f. intro n. apply* IOget.

Qed.

Haskell

rpc w w' f n = iOget w w' (f n)

Apply IOget to (f n)

(World parameters are inferred)

Lemma (Remote Procedure Call)

$$\forall \textit{w w'}, \big(\mathbb{N} \rightarrow \textit{IO w' bool}\big) \rightarrow \big(\mathbb{N} \rightarrow \textit{IO w bool}\big)$$

Proof. simpl; introv f. intro n. apply* lOget. **Qed**.

Haskell

Notice: The annotated Haskell code is not runnable yet!

The HEC Compiler: the mobility fragment

$$\begin{split} \mathcal{M}[\![\mathrm{iOget}\ A_1\ A_2\ (F\ A_3)]\!]_{\rho} &= \ \mathsf{spawn}(\mathrm{element}(2,\ \mathcal{E}[\![A_1]\!]_{\rho}),\ \rho(\eta)\,,\\ & \ \mathrm{dispatcher},[\![\mathrm{fun}\ ()\ ->\ \mathcal{E}[\![F]\!]_{\rho}\mathcal{E}[\![A_3]\!]_{\rho} \mathbf{end},\\ & \ \mathcal{E}[\![A_2]\!]_{\rho}, \{\mathbf{self}()\ ,\ \mathbf{node}()\}\!]),\\ & \ \mathbf{receive}\{\mathrm{result},\ Z\}\ ->\ Z \end{split}$$

Erlang Primitives remind:

```
Pid = spawn (Host, Module, Function, Parameters) (Code Mobilty)
receive {Pattern} -> Expression (Receive)
Pid! Expression (Send)
```

The HEC Compiler: the location fragment

New

```
\mathcal{M}[[i]] in A_1 A_2 A_3]_{\rho} =
 (\mathcal{E}[A_3]_{\rho}) (\text{spawn}(\text{element}(2, \mathcal{E}[A_1]_{\rho}), \rho(\text{"module name"}), \text{location}, [\mathcal{E}[A_2]_{\rho}]))
```

Update

$$\mathcal{M}[\![\mathsf{iOupdate}\ w\ A_1\ A_2\ A_3]\!]_\rho = \mathcal{E}[\![A_1]\!]_\rho! \{\mathsf{update}, \mathcal{E}[\![A_2]\!]_\rho\}, \mathcal{E}[\![A_3]\!]_\rho$$

Lookup

```
 \begin{split} \mathcal{M}[\![ \text{iOlookup } w \ A_1 \ A_2]\!]_{\rho} &= \mathcal{E}[\![A_1]\!]_{\rho}! \{ \text{get}, \{ \text{self}(), \text{node}() \} \}, \\ &\text{receive}\{ \text{result}, \ Z \} \rightarrow (\mathcal{E}[\![A_2]\!]_{\rho})(Z) \end{split}
```

Erlang Primitives remind:

```
Pid = spawn (Host, Module, Function, Parameters) (Code Mobilty)
receive {Pattern} -> Expression (Receive)
Pid! Expression (Send)
```

The rpc example

The rpc example

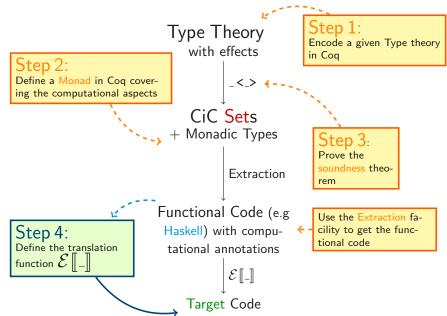
The rpc example

[fun () \rightarrow f(n) end, w', {self(), node()}]),

receive{result, Z} -> Z

 λ . f(n)

Adding a Type Theory



11/22

λ_{XD} : A Type Theory for distributed computations

We give a Type theory similar to the Intuitionistic Hybrid Modal Logic of Licata and Harper¹

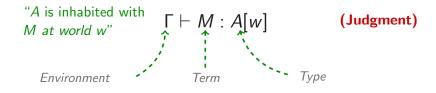
Syntax

(Hybrid Modal Logic IS5)

```
Types A ::=  Unit | Bool | Nat |A \times B|A \rightarrow B | Ref (Locations) | \forall w.A (Necessarily \Box A) | \exists w.A (Possibly \Diamond A) | A@w (Nominal) | \bigcirc A (Lax Modality)
```

¹ "A monadic formalization of ML5". In Proc. LFMTP, EPTCS 34, 2010.

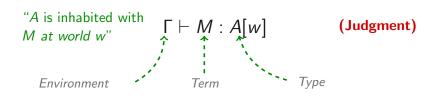
λ_{XD} : Type System

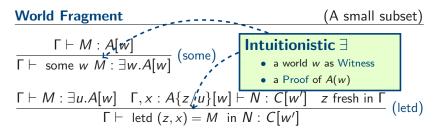


▶ World Fragment

▶ Monadic Fragment

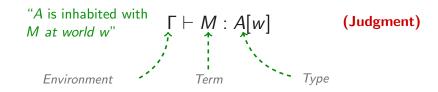
λ_{XD} : Type System





→ World Fragment

λ_{XD} : Type System



Monadic Fragment

(A small subset)

$$\frac{\mathsf{Mobile}\ A\quad \Gamma\vdash M:\bigcirc A[w']}{\Gamma\vdash\ \mathsf{get}\ w'\ M:\bigcirc A[w]}\ (\mathsf{Get})$$

→ World Fragment

▶ Monadic Fragment

Soundness

We restrict the mobile types which are movable:

$$\frac{b \in \{\mathsf{Unit}, \, \mathsf{Nat}, \, \mathsf{Bool}\}}{\mathsf{Mobile} \, b} \, \left(\mathsf{Basic}\right) \quad \frac{\mathsf{Mobile} \, A \quad \mathsf{Mobile} \, B}{\mathsf{Mobile} \, A \times B} \, \left(\mathsf{Prod}\right) \\ \frac{\mathsf{Mobile} \, A \otimes w}{\mathsf{Mobile} \, A \otimes w} \, \left(\mathsf{At}\right) \quad \frac{\mathsf{Mobile} \, A}{\mathsf{Mobile} \, \forall w.A} \, \left(\mathsf{Forall}\right) \quad \frac{\mathsf{Mobile} \, A}{\mathsf{Mobile} \, \exists w.A} \, \left(\mathsf{Exists}\right)$$

Lemma (Mobility)

 $\forall A \in \textit{Type, if Mobile A, then } \forall w, w' \in \textit{W, } A < w > = A < w' >.$ [Coq proof]

λ_{XD} : Translation into CIC Sets

$$_<\!w>: \mathsf{Type}_{\lambda_{XD}} o \mathsf{Type}$$

Unit
$$<$$
w $> =$ unit

Nat $<$ w $> =$ nat

 $A \rightarrow B <$ w $> = A <$ w $> -> B <$ w $>$
 $A \times B <$ w $> = A <$ w $> * B <$ w $> $\forall w'.A <$ w $> =$ forall $w', (A w') <$ w $>$

Bool $<$ w $> =$ bool

 $\exists w'.A <$ w $> = \{ w' : world & (A w') <$ w $> \}$

Ref $<$ w $> =$ ref w
 $A@w' <$ w $> = A <$ w $> >$$

Theorem (Soundness)

Let $\Gamma \in Ctxt$, $t \in Term$, $A \in Type$, $w \in World$, let $\{w_1, \dots, w_n\}$ be all free worlds in Γ, A, t, w .

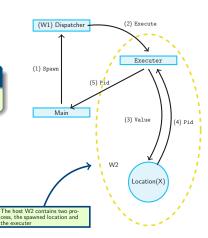
$$\Gamma \vdash_{XD} t : A[w] \rightarrow w_1 : W, \dots, w_n : W \vdash_{-} : \llbracket \Gamma \rrbracket \rightarrow A \lt w \gt.$$
 [Coq proof]

Example: Remote Write

Lemma (Remote Write)

 $\forall w' \ w'', \mathbb{N}@w' \rightarrow_{XD} \bigcirc (Ref@w'') < w'>$

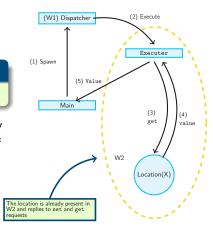
Proof. simpl; introv value. apply IOget with (remote := w2). apply IOnew. exact value. intros address. apply IOret. exact address. **Defined**.



Example: Remote Read

 $\forall w' \ w'', Ref@w'' \rightarrow_{XD} \bigcirc(\mathbb{N}) < w'>$

Proof. simpl; introv address. apply lOget with (remote := w2). apply* lOlookup. intros. apply* lOret. **Defined.**



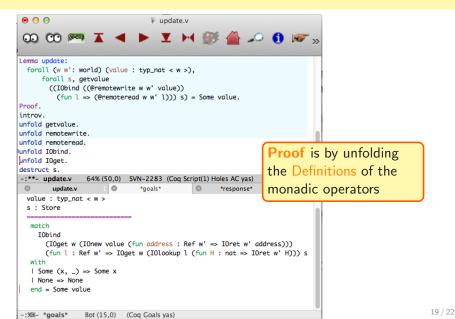
Update Lemma

A suitable lemma can be stated and proved in order to guarantee the system behaves correctly

Lemma (Update operation is correct)

```
\forall w \ w', \forall \mathbb{N}, \forall s : Store,
getvalue \ ((IObind \ ((@remotewrite \ w \ w' \ value \ ))
(\lambda \ l. \ (@remoteread \ w \ w' \ l))) \ s) = Some \ value.
[Cog \ proof]
```

Update lemma: proof deals with monadic constructors



Conclusions

Summary

- We presented a generic methodology for code extraction which works in principle with every computational aspect
 - + Define a front-end type theory on top (optional)
 - + Define a IO monad over Set
 - + Implement the back-end compiler
- We shown how to extract distributed code by defining a Distributed Monad IO w A
- We defined the λ_{XD} on top

Conclusions

Future work

- Other computational aspects / target languages
- is the compiler correct? ⇒ Compiler Certification could be achieved by using the implementation of monadic operators as the specification of how the target code must behave
- Alternatively, an Axiomatization for the operators is needed
 - + which takes into account the mobility
 - + not available yet (AFAIK)
 - + but could be achived extending similar work (see e.g., Power and Plotkin Axioms)

Thanks for your attention. Questions?

Appendix: λ_{XD} Typesystem - World Fragment

$$\frac{\Gamma \vdash M : A[w'] \quad w \text{ fresh in } \Gamma}{\Gamma \vdash \Lambda w.M : \forall w.A[w']} \text{ (Box)} \qquad \frac{\Gamma \vdash M : \forall w.A[w]}{\Gamma \vdash \text{ unbox } w'M : A[w]} \text{ (Unbox)}$$

$$\frac{\vdash \Gamma \quad x : A[w] \in \Gamma}{\Gamma \vdash x : A[w]} \text{ (Var)} \qquad \frac{\Gamma \vdash M : A[w]}{\Gamma \vdash \text{ some } w \quad M : \exists w.A[w]} \text{ (Some)}$$

$$\frac{\Gamma \vdash M : \exists u.A[w] \quad \Gamma, x : A\{z/u\}[w] \vdash N : C[w'] \quad z \text{ fresh in } \Gamma}{\Gamma \vdash \text{ letd } (z,x) = M \text{ in } N : C[w']} \text{ (LetD)}$$

$$\frac{\Gamma \vdash M : A[w]}{\Gamma \vdash \text{ hold } M : A@w[w']} \text{ (Hold)}$$

$$\frac{\Gamma \vdash M : A@z[w] \quad \Gamma, x : A[z] \vdash N : C[w]}{\Gamma \vdash \text{ leta } x = M \text{ in } N : C[w]} \text{ (LetA)}$$

▶ Return

Appendix: λ_{XD} Typesystem - Monadic fragment

$$\frac{\Gamma \vdash M : A[w]}{\Gamma \vdash \text{ return } M : \bigcirc A[w]} \text{ (Ret)} \qquad \frac{\Gamma \vdash M : \bigcirc A[w]}{\Gamma \vdash \text{ bind } M \ N : \bigcirc B[w]}$$

$$\frac{\text{Mobile } A \quad \Gamma \vdash M : \bigcirc A[w']}{\Gamma \vdash \text{ get } w' \ M : \bigcirc A[w]} \text{ (Get)}$$

$$\frac{\Gamma \vdash M : \text{Nat}[w]}{\Gamma \vdash \text{ new } M \ N : \bigcirc A[w]} \text{ (New)}$$

$$\frac{\Gamma \vdash M : \text{Ref } [w]}{\Gamma \vdash \text{ lookup } M \ N : \bigcirc A[w]} \text{ (New)}$$

$$\frac{\Gamma \vdash M : \text{Ref } [w]}{\Gamma \vdash \text{ lookup } M \ N : \bigcirc A[w]} \text{ (Lookup)}$$

$$\frac{\Gamma \vdash T1 : \text{ Ref } [w]}{\Gamma \vdash \text{ update } T1 \ T2 \ T3 : \bigcirc A[w]} \text{ (Update)}$$

Appendix: On the axiomatization

Rules for the lookup and update are borrowed from Plotkin and Power ¹:

$$\begin{split} &1.l_{loc}(u_{loc,v}(x))v = x \\ &2.l_{loc}(l_{loc}(t_{vv'})_{v})_{v'} = l_{loc}(t_{vv})_{v} \\ &3.u_{loc,v}(u_{loc,v'}(x)) = u_{loc,v'}(x) \\ &4.u_{loc,v}(l_{loc}(t_{v'})_{v'}) = u_{loc,v}(t_{v}) \\ &5.l_{loc}(l'_{loc}(t_{vv'})_{v'})_{v} = l'_{loc}(l_{loc}(t_{vv'})_{v})_{v'} \text{where } loc = loc' \\ &6.u_{loc,v}(u_{loc',v'}(x)) = u_{loc',v'}(u_{loc,v}(x)) \text{where } loc = loc'' \end{split}$$

→ Return

¹G. D. Plotkin and J. Power. Notions of computation determine monads. In Proc. FoSSaCS, LNCS 2303, 2002.